
142
[bookmark: _Toc38781416][bookmark: _Toc46301615][bookmark: _Toc46552989][bookmark: _Toc53046124][bookmark: _Toc74648701][bookmark: _Ref127777529][bookmark: _Toc259176914][bookmark: _Toc414873014][bookmark: _Toc38781270][bookmark: _Toc46307878][bookmark: _Toc46552773][bookmark: _Toc47676578][bookmark: _Toc47758912][bookmark: _Toc53046044][bookmark: _Toc105586936][bookmark: _Ref137547713]Part V: The Formula Language

Part V: The Formula Language
Overview
The Formula Language
Variables Available in Formulas
Formula Evaluation Order
Indexing
Using Table and Record Control Functions in Formulas
Using .NET Framework Functions in Formulas
Using Custom Functions in Formulas
Formula Error Reporting
Data Validation with Formulas
Dropdown Filtering with Formulas
Cross-site Scripting and SQL Injection Attacks
Formula Run-Time Performance
Common Formula Examples
Conditional Display of Field, Label and Value
Display Multiple Columns in a Dropdown List
Display Row Numbers in a Table Control
Display Row Rank in a Table Control
Display Row Totals in a Table Control
Filter Dropdown List Box Contents
Filter FieldFilter Dropdown Contents
Filter Table Control Contents
Filter Table Control by Logged-In User
Filter Table Control by URL Value
Get Largest Field Value from a Table Column
Get Smallest Field Value from a Table Column
Google Maps Integration
Hide GEN:BUTTON or Tab container
HyperLink URLs, Images and Email Addresses
Invoke a Javascript
Make, Model, Year (Dependent dropdown lists)
Modifying Values before Saving Data
Pre-Select an Item in FieldFilter Dropdown
Pre-Select Multiple Items in a FieldFilter List Box
Remove Please Select from Dropdown List
Retrieve Information from a Cookie
Retrieve Information from a Session Variable
Retrieve Information from the Cache
Save Information in a Cookie
Save Information in a Session Variable
Set Content of FieldFilter Dropdown
Validate Field Value
Validate Related Textbox Fields and Display Custom Error Message
Virtual Calculated Field in Table Record
Operators
IF
Arithmetic operators (*, +, -, %, /, ^)
Boolean operators (AND, OR, XOR, NOT)
Comparison operators (=, <>, >, <, >=, <=)
String Operators (+)
Boolean Functions
AND1
NOT1
OR1
Data Conversion Functions
PARSEDATE
PARSEDECIMAL
PARSEINTEGER
Database Functions
GETCOLUMNVALUE
GETCOLUMNVALUES
LOOKUP
DateTime Functions
ENDOFCURRENTMONTH
ENDOFCURRENTQUARTER
ENDOFCURRENTWEEK
ENDOFCURRENTYEAR
ENDOFLASTMONTH
ENDOFLASTQUARTER
ENDOFLASTWEEK
ENDOFLASTYEAR
ENDOFMONTH
ENDOFQUARTER
ENDOFWEEK
ENDOFYEAR
HOUR
MINUTE
MONTH
NOW
SECOND
STARTOFCURRENTWEEK
STARTOFCURRENTMONTH
STARTOFCURRENTQUARTER
STARTOFCURRENTYEAR
STARTOFLASTMONTH
STARTOFLASTQUARTER
STARTOFLASTWEEK
STARTOFLASTYEAR
STARTOFMONTH
STARTOFQUARTER
STARTOFWEEK
STARTOFYEAR
TIME1
TODAY
YEAR
YESTERDAY
Formatting Functions
CAST
FORMAT
Geocoding Functions
BOUNDINGBOXEDGE
CLEARBROWSERLOCATION
DECIMALTODEGREES
DECIMALTOMINUTES
DECIMALTOSECONDS
DEGREESMINSECTODECIMAL
DISTANCEBETWEEN
GETBROWSERLOCATION
GETDISTANCEUNIT
GOOGLEDIRECTIONS
GOOGLEINTERACTIVEMAP
GOOGLEMAP
GOOGLEMAPWITHDIRECTIONS
GOOGLEINTERACTIVEMAPURL
GOOGLEMAPURL
GOOGLEPOPUPMAPURL
ISWITHINRADIUS
LOCATIONTOADDRESS
LOCATIONTOLATITUDE
LOCATIONTOLONGITUDE
LOCATIONTOOTHER
SETDEFAULTLOCATION
SETDISTANCEUNIT
Information Functions
ISBLANK
ISEVEN
ISLOGICAL
ISNULL
ISNUMBER
ISODD
ISTEXT
Mathematical Functions
ABS
CEILING
EXP
FLOOR
LOG
MAX
MIN
MODULUS
POWER
PI
QUOTIENT
ROUND
SQRT
TRUNC
Session, Cookie, URL and Other Functions
CACHE
COOKIE
DECRYPT
ENCRYPT
DECRYPTDATA
ENCRYPTDATA
RESOURCE
ROLES
SESSION
URL
USERID
USERNAME
USERRECORD
Record Control-Level Functions
RANK
ROWNUM
RUNNINGTOTAL
String Functions
CAPITALIZE
CHARACTER
CONCATENATE
EXACT
FIND
LEFT
LEN
LOWER
MID
REPLACE
REPT
RIGHT
SUBSTRING
TRIM
UPPER
Table Control-Level Functions
AVERAGE
COUNT
COUNTA
MEAN
MEDIAN
MODE
RANGE
SUM
TOTAL

[bookmark: _Toc28775962][bookmark: _Toc38781339][bookmark: _Toc46307920][bookmark: _Toc46552933][bookmark: _Toc47676621][bookmark: _Toc47759077][bookmark: _Toc53046086][bookmark: _Toc38781240][bookmark: _Toc45716101][bookmark: _Toc45967298][bookmark: _Ref48632451][bookmark: _Toc49837609][bookmark: _Toc49837806][bookmark: _Toc53045976][bookmark: _Toc38781284][bookmark: _Toc45967079][bookmark: _Toc45968170][bookmark: _Toc46552627][bookmark: _Ref48389537][bookmark: _Ref49344431][bookmark: _Toc49837610][bookmark: _Toc49837807][bookmark: _Toc53045977][bookmark: _Toc58845108][bookmark: _Toc60038459]
[bookmark: _Toc414873015]Overview
Iron Speed Designer provides a Microsoft Excel-like formula capability for accomplishing many common customization tasks, including:
· Display a calculated field, such as Unit Price * Quantity.
· Assign a value to a data-bound control based on a formula.
· Initialize a textbox or a literal to a value from a URL, Session, Cookie or another field.
· Use a formula in a WHERE clause of a query.
· Look up values in other database tables and display one or more fields.
Formulas are used in the Page Property Sheet, the Database Property Sheet and the Query Wizard. The Property Sheet allows formulas and database queries to be specified for different events. For example, a textbox control can display an initial value for new records and an existing database value when editing a record.
An impressive array of built-in functions and operators provide the underlying power and flexibility to implement most customizations.
[bookmark: _Toc259526318][bookmark: _Ref259635725]Formula Examples
A few examples will give you a sense of what can be accomplished with formulas.
	Last Name
	= CAPITALIZE(SUBSTRING(USERNAME(), 2))
If the logged in user name is First Initial Last Name, strip the first initial with the SubString function, and Capitalize the resulting string.

	First Name
	= IF(USERNAME() = “lskywalker”, “Luke”, “Anakin”)
Use an IF function to determine the name of the currently logged in user, and initialize the first name value based on the logged in user name.

	Title
	= RESOURCE("Txt:Other")
Get a resource string for the current culture.

	Address
	= “2870 Zanker Road"
A specific string value.

	Email Address
	= USERRECORD("EmailAddress")
Retrieve the value of the EmailAddress field from the database record of the currently logged in user.

	City
	= “San Jose”
A specific string value.

	Hire Date
	= TODAY()
Today’s date. Time is specified as 12:00:00 AM. Use NOW() to retrieve today’s date and current time.

	Birth Date
	= TODAY().ADDYEARS(-25)
Twenty five years ago. Note the usage of additional functions (AddYears) from the Microsoft .NET DateTime object class.

	Notes
	= "<i>Please enter something descriptive about this employee</i>"
A specific string value containing HTML formatting code.

Here’s the resulting Add Record page showing how each of these formulas sets an initial value for their respecitve fields.
[image:]
Related topics
The Formula Language
Data Validation with Formulas
Dropdown Filtering with Formulas
Common Formula Examples
Cross-site Scripting and SQL Injection Attacks
Formula Run-Time Performance
New and Customized Functions

[bookmark: _Toc259526429][bookmark: _Ref259635596][bookmark: _Toc414873016]The Formula Language
The formula language uses a combination of functions, variables and operators to provide easy access to the database record, the controls on the page and to environment variables such as sessions and cookies. The language is not case-sensitive.
Arithmetic Operators
All standard arithmetic operators as well as the modulus (%) and power (^) operators are supported.
= a*2 + b ^ 2 - 100 % 5
Comparison Operators
All the standard comparison operators are supported. The not equal operator is <> and the equal operator is =.
= a <> 100
AND, OR, XOR, NOT Operators
Both logical and bitwise operations are supported. If both operands are booleans, then the operation is logical. If both are integer, the operation is bitwise. Any other combination results in an error.
Example (logical):
= a > 100 AND NOT b = 100
Example (bitwise):
= (100 OR 2) AND 1
Shift Operators
The left (<<) and right (>>) shift operators do a bitwise shift and are only valid on integer types.
= 100 >> 2
Concatenation
The + operator also serves as the string concatenation operator. If either of its operands is a string, it will perform a concatenate instead of an addition. It is valid for only one operand to be a string in which case, both operands are converted to string and concatenated accordingly.
= "abc" + "def"
= "the number is: " + 100
Indexing
The indexing operator takes the form: member[indexExpression]. Any expression can appear inside the brackets. Indexing a type which is not an array generates an error.
= array[i + 1] + 100
Literal types
These literals are supported in expressions:
	Literal type
	Description

	Char
	A character in single quotes: 'a'

	Boolean
	Either true or false

	Real
	Any number with a decimal point. You can use the 'd', 'f', or 'm' suffixes to specify whether the number should be a double, single, or decimal respectively. The default data type used is Decimal.

	Integer
	Any number without a decimal point. Append "L" to force the number to a 64-bit integer and/or a "U" to force it to unsigned. The Formula Evaluator will try to assign an integer literal to the first integer type that can contain the value.

	Hex
	Integer constants can also be specified in hex notation: 0xFF12

	String
	String literals are enclosed in double quotes and escaping characters follows the same rules as C#: "string\u0021\r\n a \"new\" line".

	Null
	Using the keyword null will load the null reference into an expression.

	DateTime
	A valid .NET DateTime. A specific date can be provided by surrounding it with #'s. Example: #08/06/2008#.ToLongDateString()

	TimeSpan
	A string in the format ##[d.]hh:mm[:ss[.ff]]#. Example: #08/06/2008# + ##1.23:45#

Casting
Casting is performed using the special cast function which takes the form cast(value, type).
= 100 + cast(obj, int)
While casting work for most cases, there are times when there are additional formatting characters in the value. For example, the total amount may be displayed as $1,234.56. In this case, casting is not sufficient, but instead the value must be parsed to remove the currency symbol and separator characters. Conditional Operator
Conditional operators that return a result based on a Boolean condition are supported. It is implemented as a special function of the form IF(condition, whenTrue, whenFalse). The operator is a "true" conditional operator: only the expression that matches the condition is evaluated.
= IF(a > 100 and b > 10, "both greater", "less")
In Operator
The In operator is a Boolean binary operator that returns true if its first operand is contained in its second operand. It has two forms:
· List: Searches a list of values for a given value: value IN (value1, value2, value3,...). The value is compared against each value in the list and true is returned if the value is found, false if no match is found.
· Collection or Arrays: Searches a single collection or array for a given value: value IN collection.
Example (List):
= IF(100 in (100, 200, 300, -1), "in", "not in")
Example (Collection):
"= IF("ironspeed\mlam" in ROLES, "in", "not in")
Case Insensitive
Formulas are case insensitive regardless of whether the application language is Visual Basic .NET or C#. Function names such as ParseDecimal, PARSEDECIMAL, parseDecimal, parsedecimal, etc. all refer to the same function. Control names and properties can be specified in any case. For example, the following formula returns the same value:
= OrdersRecordControl.CustomerId.Text
= ordersrecordcontrol.customerid.text
Escape Characters
In order for application code function properly, escape characters are used to escape problem characters (“, \). In the Formula tab, the excape character used is ‘\’.
The examples show different escape character usage.
	Formula
	Display

	= "C:\\Users\\IronSpeed\\Desktop"
	C:\Users\IronSpeed\Desktop

	= “\””
	“

	= “\\”
	\

[bookmark: _Toc259526430][bookmark: _Ref259635600][bookmark: _Toc414873017]Variables Available in Formulas
There are typically three types of variables available in formulas: database record variables, database default variables and user interface control variables.
Database Record Variables
Database record variables correspond to values retrieved from the current database record and have a very simple format:
<FieldName>
For example, if the current record being displayed is a Customer record, available variables include all columns within that database record, e.g.:
FirstName
LastName
CompanyName
These variables are typically used to initialize your page’s user interface controls via the “Initialize when Displaying” event, e.g.:
= FirstName
= LastName
= CompanyName
However, database record variables are typically not used for validation or saving data back into the database, since they contain the original value retrieved from the database, which may have been updated by the application user.
Database record variables typically require no conversion for use, but may require formatting for display purposes. Usage is dictated by the underlying type in the database. For example, an OrderDate database record variable would typically be a DateTime object displayed as “mm/dd/yy” (e.g., 7/31/20102), the default display format set in the database. The display format can be changed by modifying the “Display format” property on the Property Sheet, for example to “Weekday, Month Day, Year” (Tuesday, July 31, 2012).
Database Default Variables
You may have set a default value for a field in your underlying database or you may have specified a default value on the Database tab in Iron Speed Designer. These default values typically prevent NULL values from being inserted into the database if the application user does not enter a value. This also lets the application user to review the default value and change it if necessary.
Database default values can be used in formulas as:
<FieldName>DefaultValue
“FieldName” is the name of the underlying database field.
The variable returns an empty string if there is no default value for the database field. The default value is stored as a string and is formatted prior to being displayed in the textbox or label in the default format of the field.
Database default variables are typically used in the “Initialize when Adding record” event in the Formula tab. For example, user interface controls can be initialized to the database default variables on an Add Record or Edit Table page where new rows can be added, e.g.:
= ShipDateDefaultValue
= CountryDefaultValue
User Interface Controls
User interface control variables reference the contents of user interface controls displayed on the web page. User interface control variables can be referenced in formulas as:
<PanelName>.<ControlName>.<Property>
These variables are prefixed with the name of the record control or row being displayed. For example, a textbox for entering the first name of a customer record may be referenced as:
CustomerRecordControl.FirstName.Text
“Text” is the specific control property being referenced. Similarly, you can reference textbox controls within a table control (repeater):
EmployeesTableControlRow.BirthDate.Text
If the control is a dropdown list or listbox, then the property used typically would be “SelectedValue”, e.g.:
CustomerRecordControl.ProductID.SelectecValue
EmployeesTableControl.LastNameFilter.SelectedValue
Order_DetailsTableControlRow.ProductID.SelectedValue
The property for a checkbox would be “CheckedValue”, e.g.:
CustomerRecordControl.ActiveStatus.CheckedValue
User interface values are typically text values and must be converted to a native format before being used in formulas. For example, the HireDate field must be converted from raw text to a DateTime object before being compared to another date. Use the PARSEDATE function to convert text strings into DateTime objects, e.g.:
= PARSEDATE(CustomersRecordControl.HireDate.Text)
Use the PARSEINTEGER and PARSEDECIMAL functions to convert numeric values to integer or decimal objects. This includes all percentage values.
= PARSEINTEGER(EmployeeRecordControl.Age.Text)
= PARSEDECIMAL(OrderDetailsRecordControl.Amount.Text)
For example, to calculate the ExtendedPrice in a formula, the UnitPrice and the Quantity must be converted before multiplying them, e.g.:
= PARSEDECIMAL(Order_DetailsTableControlRow.UnitPrice.Text) * PARSEDECIMAL(Order_DetailsTableControlRow.Quanity.Text)
Note: If the value of a control is being used in the Formula of the other control, then both controls must be located in the same panel. If controls belong to different panels then neither can include a reference to the other in their respective formulas.
[bookmark: _Toc259526431][bookmark: _Ref259635601]Referencing Other Controls on the Page
All parent or sibling controls on the page can be referred to directly within the Property Sheet. For example, if the page contains a Customer record (parent), an Order table (child) and Order Details table inside the Order table (grandchild, table-inside-table), then your formula can reference each of these controls based on where the formula is specified.
	Formula Specified At
	Available References

	Customer (Parent or Master record control)
	· Controls in Customer record control
· Table-level controls in Order table control

	Order Table (Child or Detail) – Table level controls (e.g., search or filter controls)
	· Controls in Customer record control
· Table-level controls in Order table control

	Order Table (Child or Detail) – Row level controls (e.g., fields within the order table row)
	· Controls in Customer record control
· Table-level controls in Order table control
· Row-level controls within same row of the Order table control
· Table-level controls in the Order Details table control

	Order Details (Grandchild / Table-in-table) – Table level controls (e.g., search or filter controls)
	· Controls in Customer record control
· Table-level controls in Order table control
· Row-level controls within same row of the Order table control
· Table-level controls in Order Details table control

	Order Details (Grandchild / Table-in-table) – Row level controls (e.g., fields within the order details table row)
	· Controls in Customer record control
· Table-level controls in Order table control
· Row-level controls within same row of the Order table control
· Table-level controls in Order Details table control
· Row-level controls within same row of the Order Details table control

All parent controls can be referenced, but access to child controls is limited since a specific row number is required.

[bookmark: _Toc259526432][bookmark: _Ref259635602][bookmark: _Toc414873018]Formula Evaluation Order
Formula evaluation occurs within the Set methods for each control. The Set method is called from within the DataBind right after the LoadData function is called to load the data from the database. Microsoft .NET Framework does not guarantee the order in which the DataBind will be called for each control within the page. For example, if there are two record controls side-by-side, there is no guarantee that the top-left record control’s DataBind will be called prior to the DataBind of the lower-right control on the page. Specifying a formula in the second record control that uses a value from the first record control may or may not work based on the order in which Microsoft .NET Framework calls the DataBind method.
If the controls have a parent-child relationship, then the parent will always be loaded first prior to the child since the Id of the parent is required to load the children. This ensures that child controls can access the parent controls without any problem.
If there is a need to initialize the value of a control from a value of another control, the best approach is to use the database record value instead of the control value, since the LoadData will have loaded the database record prior to the DataBind method being called. Since the database record is loaded as a whole, there is no problem using other fields within the database record. Similarly, parent database records are also available for use in initializing other user interface controls.

[bookmark: _Toc259526433][bookmark: _Ref259635604][bookmark: _Toc414873019]Indexing
All functions use zero-based indexing in order to be consistent with Microsoft .NET Framework languages such as Visual Basic .NET and C#. (Microsoft Excel uses one-based indexing). This example returns all remaining characters from position 2 onwards of a zero-based index - “st”:
= SUBSTRING(“Test”, 2)
	Position
	0
	1
	2
	3

	String
	T
	e
	s
	t

This example returns two characters from position 5 onwards of a zero-based index - “Sp”:
= SUBSTRING(“Iron Speed Designer”, 5, 2)
	Position
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	String
	I
	r
	o
	n
	
	S
	p
	e
	e
	d
	
	D
	e
	s
	i
	g
	n
	e
	r

[bookmark: _Ref267652435][bookmark: _Toc414873020]Using Table and Record Control Functions in Formulas
The Table and Record controls have a number of functions available that operate on these controls.
Table control functions
These functions are available for all Table controls on a page:
· SUM
· MAX
· MIN
· COUNT
· COUNTA
· MEAN
· AVERAGE
· MODE
· MEDIAN
· RANGE
In some cases, to make functions easier to use, there is an alternative interface provided for the functions. For example, the SUM() function requires a table control and the name of a literal, textbox or label user interface control. This function then goes through all of the literal controls within the table control and sums the values in each row. Normally, this function is called as:
= SUM(OrderDetailsTableControl, “ExtendedPrice”)
To provide an alternative implementation, the SUM() function can also be called as follows:
= OrderDetailsTableControl.SUM(“ExtendedPrice”)
The recommend approach is to use the second, alternative implementation to make it easier to understand.
Record control functions
The following functions are implemented for the Base Application Record Control and are available for all Record Controls and Table Control Rows on a page:
· RANK
· ROWNUM
· RUNNINGTOTAL

[bookmark: _Toc259526434][bookmark: _Ref259635607][bookmark: _Toc414873021]Using .NET Framework Functions in Formulas
A number of Microsoft .NET functions are also available for use in formulas. In particular, all shared and static properties and functions from the String, Math, DateTime and Convert classes in the Microsoft .NET Framework are available.
The first argument is the type and the second argument is the prefix (or namespace) used to refer to the function. For example, to get a string of all roles separated by commas, you can use the Join() static function on the String class:
= String.Join(“,”, Roles())
In addition to using the shared or static functions from the above classes, all non-shared functions can be used if the formula already uses an instance of the given data type. For example, by calling the PARSEDATE function on a user interface control returns a DateTime object instance. Non-shared DateTime functions can be called on this instance if required. For example,
= PARSEDATE(OrdersRecordControl.OrderDate.Text).AddDays(-10)
will return a date 10 days earlier than the value entered in the OrderDate textbox control.
String static function examples
= String.Empty
= String.Compare(“this”, “that”)
= String.Format(“This is a {0} idea.”, “GREAT”)
Reference: http://msdn.microsoft.com/en-us/library/system.string_members.aspx
DateTime static function examples
= DateTime.DaysInMonth(2010, 4)
= DateTime.IsLeapYear(2010)
= DateTime.MaxValue
Reference: http://msdn.microsoft.com/en-us/library/system.datetime_members.aspx
Convert static function examples
= Convert.ToDecimal(10)
= Convert.ToString(10)
Reference: http://msdn.microsoft.com/en-us/library/system.convert_members.aspx
Math static function examples:
= Math.Abs(-55)
= Math.Log(45)
= Math.Truncate(10.45)
Reference: http://msdn.microsoft.com/en-us/library/system.math_members.aspx

[bookmark: _Toc259526435][bookmark: _Ref259635609][bookmark: _Toc414873022]Using Custom Functions in Formulas
You can use your own custom functions in formulas in your application. There are three types of custom functions you can add:
· Local extensions: Functions specific to the page, record or table control.
· Application-wide extensions: Functions available for the entire application to use.
· Importing .NET Framework classes and functions: You can use any .NET Framework class by importing the class in the formula functions.
Local Extensions
For localized extensions, you can add functions at the page, table control or row control levels. Specifically, the formula language exposes variables for page object as well as the table control, record control and row objects. So you can call any function you want on these classes as well.
For example, on the ShowCategoriesTable.aspx displaying a Categories table page, you can define functions on the ShowCategoriesTable page class, on the CategoriesTableControl class, or on the CategoriesTableControlRow class as needed.
As an example, if you defined the following non-shared (VB.NET) or non-static (C#) functions:
· In the ShowCategoriesTable class, define the GetPageValue() function.
· In the CategoriesTableControl class, define the GetTableValue() function.
· In the CategoriesTableControlRow class, define the GetRowValue() function.
On the Formula tab, these formulas can be used to access each of these functions respectively:
= Page.GetPageValue()
= CategoriesTableControl.GetTableValue()
= CategoriesTableControlRow.GetRowValue()
Each of these functions can return a constant, another value local to their respective objects, call a function in another class, call another shared function on another class, another DLL or any other function that is possible to implement in the application.
Note that these formulas are context sensitive. The Row function can only be called from within a row because the CategoriesTableControlRow variable is only accessible from the row. Similarly, the Table function can be called from within the row or when within the table area (e.g., filters or buttons area). The Page function can be called from anywhere on the page.
Application-wide Extensions
The formula functions for an application are implemented in two source code files within the application’s source code. New formula functions can be added to these files, or existing functions can be modified as desired.
The formula functions are split into two files because some functions cannot be used within the WHERE clause of a query. For example, the SUM, RANK or ROWNUM functions are specific to the presentation layer since they operate on textbox, literal and label controls on the web page. These functions can only be used in the Property Sheet and cannot be used in the WHERE clause of a query. Most functions however are generic and can be used in either the Property Sheet or the WHERE clause of a query.
· BaseFormulaUtils.vb or BaseFormulaUtils.cs: Located in the \Data Access Layer\Shared folder, this file contains all the formula functions that are available in common to both the data access layer and the presentation layer.
· FormulaUtils.vb or FormulaUtils.cs: Located in the \Shared folder, this file contains all the formula functions that are available only at the presentation layer. These functions cannot be used in the WHERE clause of a query.
Importing .NET Framework Classes and Functions
Any shared or static functions from either the .NET Framework or your own classes can be used by importing their types in the FormulaUtils.vb or FormulaUtils.cs class and registering them via the Evaluator.Imports.AddType() function, e.g.:
Evaluator.Imports.AddType(GetType(Math), "Math")
Evaluator.Imports.AddType(GetType(DateTime), "DateTime")
Evaluator.Imports.AddType(GetType(Convert), "Convert")
Evaluator.Imports.AddType(GetType(String), "String")
The first argument is the type and the second argument is the prefix (or namespace) used to refer to the function.

[bookmark: _Toc259526436][bookmark: _Ref259635610][bookmark: _Toc414873023]Formula Error Reporting
The formula editor reports all parser and evaluation errors within the value returned. This is similar to Microsoft Excel displaying #VALUE! in a cell when there is an error in the formula. Iron Speed Designer similarly displays an ERROR: <error message> instead of the calculated value in the event of an error to make sure it is easy to identify and fix any parsing or evaluation errors. No exceptions are thrown in the event of an error of a formula.

[bookmark: _Toc259526319][bookmark: _Ref259635727][bookmark: _Toc414873024]Data Validation with Formulas
The Property Sheet allows data validation before saving. On the “Validate when, Saving record” event, a formula can be specified that checks the values entered by the application user and report an error message. The formula can also use values from any of the other controls on the page including controls from parent record. The formula must return a blank string if the validation is successful, or return an error message.
A validation formula must use the IF() function:
= IF(expression, value1, value2)
The returned value from the IF function is considered an error message and reported to the user in a message box. A successful validation must return a blank string.
Validation is performed before the data is saved into the data source (generally the database). As such, only user interface controls can be used in the validation formula; data source fields cannot be used. User interface controls typically are text values and may contain number or date formatting separators. Call the respective Parse function to return a value of the appropriate type for comparison, such as PARSEDATE or PARSEDECIMAL.
The Validation expression can be combined with other Boolean expressions using AND, OR, NOT, and can also be nested to any level.
	BirthDate
	= IF(PARSEDATE(EmployeeRecordControl.BirthDate.Text) > TODAY(), "", "Birth Date cannot be in the future.")
If the birth date is in the future, report an error message, otherwise return an empty string to indicate a valid value. Use the value from the textbox user interface control on the page since Validation is performed before the values are retrieved into the DataSource. Use the Parse function to ensure that a proper DateTime object is returned for comparison with today’s date.

	OrderDate
	= IF(PARSEDATE(OrdersRecordControl.OrderDate.Text) < TODAY(), "Order date cannot occur in the past.", "")
If the order date is in the past, report an error message.

	PostalCode
	= IF (OrdersRecordControl.ShipCountry.Text = "USA" AND OrdersRecordControl.ShipPostalCode.Text.Trim().Length = 0, "Please specify a ZIP Code for US Customers", "")
If the Country is USA and the Postal Code field is left blank, report an error message to the user to specify the ZIP code.

If a formula is specified for multiple controls, each formula will be evaluated, and the combined error message will be displayed. For example, if both the order date is in the past and the ZIP code is not specified for US customers, the following validation message will be displayed to the user.
[image:]

[bookmark: _Toc259526320][bookmark: _Ref259635728][bookmark: _Toc414873025]Dropdown Filtering with Formulas
Property Sheet Actions can populate a filter or a field value dropdown list from a database by specifying a datasource in a table/view. The list of values displayed in the dropdown can be retrieved from a foreign key table, or another table or view.
[image:]
[image:]
[image:]
The dropdown list can also contain static values that are entered by the developer. By default, only the “Please Select” value is specified initially for field value dropdowns, or the “All” for the filter dropdowns.
[image:]
[image:]
[image:]
The static list is combined with the list retrieved from the database and displayed in the dropdown list. The elements in the static list are always shown above the database items, and they are in the order specified. The elements in the static list can be reordered with the Up/Down buttons shown below the table.
[image:]

[bookmark: _Toc259526437][bookmark: _Ref259635612][bookmark: _Toc414873026]Cross-site Scripting and SQL Injection Attacks
To make sure that Iron Speed Designer generated application is not vulnerable to Cross-site scripting and SQL Injection Attacks you may use the following guidelines:
1. SQL Injection attacks. SQL injection is the act of entering a particularly odd-looking string into a text box or query string in order to have potentially malicious SQL code execute. For example, if you have an ASP page that accepts as a query string parameter an ID field, and this ID field is then used to create a dynamic SQL query, then your application may be subject to an SQL injection attack. Using this as a parameter in a formula exposes the formula to be used maliciously by an attacker. Iron Speed Designer by default quotes all values in the formula editor to prevent SQL injection attacks.
2. Persistent cross-site scripting (XSS). Persistent XSS occurs when the data provided by the attacker is saved by the server, and then permanently displayed on "normal" pages returned to other users in the course of regular browsing, without proper HTML escaping. To protect your web site from persistent XSS you need to make sure that all values shown in form of labels or literals are HTML encoded. Iron Speed Designer gives a choice of showing text as a rich text (default option) or HTML encoded. The first option allows displaying formatted and colorful text but it adds a risk of XSS. The second option eliminates a risk of persistent XSS but in exchange your texts will show HTML tags instead of color or other HTML formatting. You may set this option globally in Application Generation Options or on per control basis. For example, you may globally set HTML encoding to all text controls but enable rich text for a certain label which content is not editable for public user.
3. Non-persistent XSS. These holes show up when the data provided by a web client, most commonly in HTTP query parameters or in HTML form submissions, is used immediately by server-side scripts to generate a page of results for that user, without properly sanitizing the request. To prevent passing non-authorized URL parameters always set Encrypt URL parameters option to ‘Yes’ in Application Generation Options wizard.
Another way to pass script to the page is to use hidden __Lastfocus variable. Iron Speed Designer generated application uses sophisticated script to ensure that focus stays on the last focused element regardless of presence of images or rich text editor. This script however uses __Lastfocus field to find last focused control. Although this type of vulnerability does not present any serious threat (*) in certain cases you may want to eliminate it anyway. You may do that by commenting out content of LoadFocusScripts and SetFocusOnLoad methods in the Shared\BaseApplicationPage. In this case application will use standard .NET set focus functionality.
(*) to experience __Lastfocus XSS victim have to first open the page, than deliberately visit malicious site which sets __Lastfocus value than hit back button to an original page and cause postback.

[bookmark: _Toc259526438][bookmark: _Ref259635613][bookmark: _Toc414873027]Formula Run-Time Performance
Formulas specified at development time are saved as strings and evaluated in the code-behind during the initial display or postback of a page. The formula is not evaluated in JavaScript or any client-side script; instead it is only evaluated on the server-side. The formula editor first parses the formula and then evaluates it. Formula parsing is based on a simple grammar and is extremely fast. The actual formula evaluation is then performed by generating Common Intermediate Language (CIL). CIL is the compiled language that all C# and Visual Basic .NET are converted into prior to execution, so formula evaluation is as fast as compiled C# or Visual Basic .NET. The only overhead comes from the parsing the formula, and this is minimal because of the simple nature of the formula.
Reference
http://en.wikipedia.org/wiki/Common_Intermediate_Language
From Wikipedia: Common Intermediate Language (formerly called Microsoft Intermediate Language or MSIL) is the lowest-level human-readable programming language defined by the Common Language Infrastructure specification and used by the .NET Framework.

[bookmark: _Toc259526321][bookmark: _Ref259635730][bookmark: _Ref259703181][bookmark: _Toc414873028]Common Formula Examples
Examples
Conditional Display of Field, Label and Value
Customize Dropdown List Sort Order
Customize Table Control Sort Order
Display Multiple Columns in a Dropdown List
Display Row Numbers in a Table Control
Display Row Rank in a Table Control
Display Row Totals in a Table Control
Filter Dropdown List Box Contents
Filter FieldFilter Dropdown Contents
Filter Table Control Contents
Filter Table Control by Logged-In User
Filter Table Control by URL Value
Get Largest Field Value from a Table Column
Get Smallest Field Value from a Table Column
Hide GEN:BUTTON or Tab container
HyperLink URLs, Images and Email Addresses
Invoke a Javascript
Make, Model, Year (Dependent dropdown lists)
Modifying Values before Saving Data
Pre-Select an Item in FieldFilter Dropdown
Pre-Select Multiple Items in a FieldFilter List Box
Remove Please Select from Dropdown List
Retrieve Information from a Cookie
Retrieve Information from a Session Variable
Retrieve Information from the Cache
Save Information in a Cookie
Save Information in a Session Variable
Set Content of FieldFilter Dropdown
Validate Field Value
Validate Related Textbox Fields and Display Custom Error Message
Virtual Calculated Field in Table Record

[bookmark: _Ref259703034][bookmark: _Toc414873029]Conditional Display of Field, Label and Value
You can easily hide or highlight the value of certain controls based on its own value or the value of another field in the database. The Property Sheet provides the ability to perform a comparison, and based on the result of comparison change the database field display. This applies to any ‘literal’ control type.
Example #1
In this example, the OrderId is displayed in red if the UnitPrice is greater than 14 and the Quantity is less than 10.
= IF(UnitPrice > 14 AND Quantity <10, ""+ OrderId + "", OrderId.ToString())
[image:]
[image:]
[image:]
Note: In order to see the text color changed to red, set the “HTML encode value” property for the OrderId control to False.
Example #2
This example displays the CustomerID in italics if the Shipped Date is greater than the Required Date:
= IF(ShippedDate > RequiredDate, "<i>" + CustomerID + "</i>", CustomerID)
[image:]
[image:]
[image:]
Example #3
The following example shows the EmployeeID for all orders placed in the current week:
= IF(OrderDate >= StartOfCurrentWeek() AND OrderDate <= EndOfCurrentWeek(), "" + EmployeeID + "", EmployeeID.ToString())
Example #4
The following example ‘hides the field’ by displaying a blank string if the Order Amount is greater than 100:
= IF(OrderAmount > 100, ““, OrderAmount)

[bookmark: _Ref259703051][bookmark: _Toc414873030]Display Multiple Columns in a Dropdown List
The foreign key can be displayed as a combination of different columns by adding the columns with a separator in the Display As section.
Step 1: In the Layout Editor, select a dropdown list control and open the Property Sheet.
Step 2: In the Control section, Actions group, select the ‘Populate from Database’ event.
Step 3: In the Actions dialog, enter a formula that combines several fields, e.g.:
= LastName + “,” + FirstName
 [image:]
[image:]
[image:]
Step 4: Build and run your application.
Note: Reference to CustomerId in another table will not be changed to the two columns unless you apply the customization for that table as well.

[bookmark: _Ref259703062][bookmark: _Toc414873031]Display Row Numbers in a Table Control
You can use a formula to display a table row number in a table control.
Step 1: In the Layout Editor, select a table control and navigate to the table rows section.
Step 2: Drag a literal control from the Toolbox into an empty cell within the ‘Table row’ area (the repeating row area).
Step 3: Select the newly added literal control, and in the Property Sheet, Actions group, select the ‘Initialize display text’ event.
Step 4: Enter a formula to display the row number:
= OrdersTableControlRow.ROWNUM()
[image:]
[image:]
[image:]
Step 5: Build and run your application.

[bookmark: _Ref259703064][bookmark: _Toc414873032]Display Row Rank in a Table Control
You can use a formula to display a table row rank in a table control.
Step 1: In the Layout Editor, select a table control and navigate to the table rows section.
Step 2: Drag a literal control from the Toolbox into an empty cell within the ‘Table row’ area (the repeating row area).
Step 3: Select the newly added literal control, and in the Property Sheet, select the ‘Initialize display text’ event.
Step 4: Enter a formula to display the rank:
= OrdersTableControlRow.RANK(“Freight”)
[image:]
[image:]
[image:]
Step 5: Build and run your application.
Note: The column value used for the rank should be a numeric value.

[bookmark: _Ref259703061][bookmark: _Toc414873033]Display Row Totals in a Table Control
You can use a formula to display a table row total in a table control. This can be useful when calculating the final price after addition of additional charges or sales tax.
Step 1: In the Layout Editor, select a table control and navigate to the table rows section.
Step 2: Insert a column into the layout and drag a literal control from the Toolbox into the newly added column within the ‘Table row’ area (the repeating row area).
Step 3: Select the newly added literal control, and in the Property Sheet, select the ‘Initialize display text’ event.
Step 4: Enter a formula to display the row total:
= (Quantity * UnitPrice) – Discount
[image:]
[image:]
[image:]
Step 5: Build and run your application.

[bookmark: _Ref259703038][bookmark: _Toc414873034]Filter Dropdown List Box Contents
The contents of a dropdown list box can be filtered to display only a subset of values by adding a WHERE clause in the Query Wizard.
Step 1: In the Layout Editor, select a dropdown list box control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents, e.g.:
= “UK”
In this example, the values are restricted to only “UK” customers.
 [image:]
[image:]
[image:]
Step 4: Build and run your application.

[bookmark: _Ref259703037][bookmark: _Toc414873035]Filter FieldFilter Dropdown Contents
Filter the contents of a dropdown list by adding additional WHERE clauses in the Query Wizard.
Example
In the example below, the contents of CompanyNameFilter are restricted to only those companies located in London.
Step 1: In the Layout Editor, select a FieldFilter dropdown control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents, e.g.:
= “London”
 [image:]
[image:]
[image:]
Step 4: Build and run your application.

[bookmark: _Ref259703040][bookmark: _Toc414873036]Filter Table Control Contents
A table control can be filtered to display only a subset of values by adding a WHERE clause in the Query Wizard.
Simple WHERE clause example
Step 1: In the Application explorer, select a table page.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents. For example, you can show only orders with a UnitPrice greater than $20 using the “is greater than” operator coupled with this formula:
 =20
The resulting WHERE clause is:
Order Details.UnitPrice is greater than $20
 [image:]
[image:]
[image:]
Step 4: Build and run your application.
Using calculation functions in WHERE clauses
Table control functions can be very useful in formulas. For example, you can display only records which have a UnitPrice lesser than average of all the UnitPrice values with this WHERE clause coupled with the “is less than” operator.
= ProductsTableControl.Average("UnitPrice")
[image:]
[image:]
[image:]

[bookmark: _Ref259703041][bookmark: _Toc414873037]Filter Table Control by Logged-In User
A table control can be filtered to display only the records for the logged-in user. This can be accomplished by adding a WHERE clause for the table control in the Query Wizard with the USERID() function.
Step 1: In the Layout Editor, select a table control.
Step 2: In the Data Sources tab, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the records displayed, for example, only those customer records whose CustomerID is the same as the logged-in User ID.
= USERID()
[image:]
Step 4: Build and run your application.

[bookmark: _Ref259703044][bookmark: _Toc414873038]Filter Table Control by URL Value
A table control can be filtered to display records based on the URL value passed into the page. This can be done by adding a WHERE clause for the table control in the Query Wizard with the URL() function.
Step 1: In the Layout Editor, select a table control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the records displayed, for example, only those customer records whose SalesRepID is the same as the SalesRep parameter passed into the page via the URL.
= URL(“Customers”)
[image:]
[image:]
Step 4: Build and run your application.

[bookmark: _Ref259703029][bookmark: _Toc414873039]Get Largest Field Value from a Table Column
You can display the largest numeric field value from a table column in any label, literal, textbox or dropdown list control using the MAX function. For example, the maximum among the “Quantity” values displayed on a ShowOrder_DetailsTable page can be displayed for the “Initialize display text” event.
Step 1: In the Layout Editor, select a table control and navigate to the table rows section.
Step 2: Drag a literal control from the Toolbox into an empty cell within the ‘Totals’ area.
Step 3: Select the newly added literal control, and in the Property Sheet, Actions group, select the ‘Initialize display text’ event.
Step 4: Enter a formula to display the row total, e.g.:
= Order_DetailsTableControl.MAX("Quantity")
[image:]
[image:]
[image:]
Step 5: Build and run your application.

[bookmark: _Ref259703031][bookmark: _Toc414873040]Get Smallest Field Value from a Table Column
You can display the smallest numeric field value from a table column in any label, literal, textbox or dropdown list control using the MIN function. For example, the minimum among the “Quantity” values displayed on a ShowOrder_DetailsTable page can be displayed for the “Initialize display text” event.
Step 1: In the Layout Editor, select a table control and navigate to the table rows section.
Step 2: Drag a literal control from the Toolbox into an empty cell within the ‘Totals’ area.
Step 3: Select the newly added literal control, and in the Property Sheet, Actions group, select the ‘Initialize display text’ event.
Step 4: Enter a formula to display the row total, e.g.:
= Order_DetailsTableControl.MIN("Quantity")
[image:]
[image:]
[image:]
Step 5: Build and run your application.
[bookmark: _Toc414873041]Google Maps Integration
Google Maps is easily integrated into your Iron Speed-generated application by adding a Literal control from the Toolbox onto your page and creating a Formula as follows:

[image:]
[image:]
[image:]
The above example uses a SalesRep record in the Southwind sample DB.
[bookmark: _Ref391563781][bookmark: _Toc414873042]Hide GEN:BUTTON or Tab container
You can easily hide GEN:BUTTON or tab container using Visible formula.
By default, SaveAndNewButton has a visible formula, = URL(“SaveAndNewVisible”). Tab Containers has a visible formula, = URL(“TabVisible”). As a result, when SaveAndNewVisible or TabVisible is passed as False through URL parameter, the corresponded button or tab containers will be invisible.
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]

[bookmark: _Ref262135546][bookmark: _Toc414873043]HyperLink URLs, Images and Email Addresses
You can easily hyperlink URLs by using the <a href> HTML tag in formulas.
Example #1
This formula adds a hyperlink to the LastName field, using the SalesRepID field as a URL parameter passed to a “Show-SalesRep” page.
= "" + LastName+ ""
[image:]
[image:]
[image:]
In order to see the field transformed into a hyperlink, several additional housekeeping actions are required.
Step 1: Set the “HTML encode value” property for the control to False. This ensures the “less than” and “greater than” symbols do not get encoded and will actually render as an image.
Step 2: Set the “Maximum display length” property to something high such as 999999 so the text is not truncated.
Step 3: Set the “Display threshold” property in the [Pop ups] section to something high so a popup is not displayed when your mouse hovers over the control.
Example #2
This example converts an Image control (Picture) on a Show Categories Table page into a hyperlink.
[image:]
[image:]
[image:]
Step 1: Drag two literal controls (asp:literal or GEN:LITERAL) from the Toolbox (ASPX & Other Controls tab) onto your page, placing one above the Picture control and the other below the Picture control.
Step 2: Rename the first and second literal to “OpenTag” and “CloseTag” respectively.
Step 3: In the Property Sheet, Actions group for the first literal control, enter this formula for the “Initialize display text” event:
= ""
Step 4: In the Property Sheet, Actions group for the second literal control, enter this formula:
= ""
Step 5: On the Property Sheet, change “Pop ups” to False to disable image popups.
Step 6: Rebuild and run your application.
Note: Splitting the formula between the two literal controls indirectly encloses the Picture control in an <a href> tag.
Example #3
This example converts an EmailAddress control into a hyperlink which opens Microsoft Outlook when clicked.
= "" + EmailAddress + ""
[image:]
[image:]
[bookmark: _Ref262136090][bookmark: _Toc414873044]Invoke a Javascript
You can easily invoke JavaScript methods when clicking a literal control. This formula cleverly emits a JavaScript method:
= "<button style=\"width:50px; height:30px\" onclick='alert(\"Hello World\")'/>"
Note: This formula uses the backslash escape character (\) to escape the quote character (“).
[image:]
[image:]
[image:]

[bookmark: _Ref260322155][bookmark: _Toc414873045]Make, Model, Year (Dependent dropdown lists)
The Make-Model-Year customization displays a set of dropdown lists that update themselves based on the values selected in other dropdown lists. For example, you might first select a vehicle ‘make’ via a dropdown list, such as ‘Toyota’. Once selected, the ‘model’ dropdown list is updated to display only those models belonging to Toyota, such as Camry, Prius and Celica. Similarly, selecting the model (Camry) displays the appropriate model years in the ‘year’ dropdown list.
Let’s first select “Mercedes” as the Make from the Make dropdown.
[image:]
Once the make is selected, the second dropdown shows the specific models belonging to the selected make, in our case “Mercedes”.
[image:]
And when the application user selects the make and the model, the available years are shown.
[image:]
Select products: A two-level dependent dropdown list example
This example shows two dropdown lists for CategoryID and ProductID where selecting CategoryID updated ProductID. Select the “Beverages” category from the Category dropdown as shown below:
[image:]
Once the “Beverages” category is selected, the second dropdown shows the products belonging to the “Beverages” category:
[image:]
Iron Speed Designer automatically determines the interdependency between controls.
Step 1: In the Layout Editor, create a CategoryID dropdown list by dragging a DropDownList control from the ToolBox on to page.
Step 2: Rename the control to “CategoryID”.

Step 3: Populate the CategoryID dropdown list with the different product categories in our database using the “Populate From Database” event.
Step 3a: In the Property Sheet, Queries section, select the appropriate query.
Step 3b: Open the Query Wizard (Edit…) to create this query:
select CategoryID from Categories
Step 3c: In the Query Wizard, select the Categories table in the “FROM” step and “CategoryID” in the “SELECT” step. Since we want to display category names instead of the CategoryIDs, write CategoryName in the Display As section of the Query Wizard.
[image:]
Step 3d: Click ‘Finish’ and close the Query Wizard’. The query is displayed in the Property Sheet, Actions group.
 [image:]
[image:]
Step 4: Populate ProductID dropdown list with all the ProductsIDs from the Products table which have their CategoryID equal to the one selected in Category dropdown. This can be done by setting ‘Depends on’ in the Property Sheet, Controls section. Using this property you do not need to manually add the WHERE clause below.
[image:]
Step 4a: Select the ProductID control in the Layout Editor, open the Property Sheet, Queries section, and select the appropriate query.
Step 4b: Open the Query Wizard (Edit…) and add this WHERE clause:
SELECT ProductID
FROM Products
WHERE Products_.CategoryID = Order_DetailsRecordControl.CategoryID.selectedvalue
Step 4c: Enter this formula in the Display As section to display the product names rather than the ProductID values:
= ProductName
Step 4d: Click ‘Finish’ and close the Query Wizard. The resulting query is displayed in the Property Sheet, Actions group.
 [image:]
[image:]
Step 5: Build and run your application.

[bookmark: _Ref259703018][bookmark: _Toc414873046]Modifying Values before Saving Data
You can easily modify data before saving it in the database, such as when encrypting passwords and adding audit trail data to a record. The best way to modify data is before saving the data to the database. The Property Sheet, Actions group provides the ability to specify a formula to retrieve the value, modify it and save it into the appropriate database column.
Example
In the example below, a formula is specified for the phone number field to add a “+1” prefix if the country is USA.
= IF(CustomersRecordControl.Country.Text = "USA", "+1 ", "") + CustomersRecordControl.Phone.Text
[image:]
[image:]
[image:]
A more complex example is where a prefix is appended if the phone number does not already start with a “+1”.
= IF(NOT(CustomersRecordControl.Phone.Text.StartsWith("+1")) AND CustomersRecordControl.Country.Text = "USA", "+1", "") + CustomersRecordControl.Phone.Text

[bookmark: _Ref259703046][bookmark: _Toc414873047]Pre-Select an Item in FieldFilter Dropdown
Normally, a Table Report page displays all records in a database table or view when the default value in the FieldFilter is set to "All". Sometimes, you might want to display records specific to a particular FieldFilter value when the page is initially displayed. For example, you might initialize a Show Customers page to display only the customers located in Berlin via the “Initialize” event.
Step 1: In the Layout Editor, select the filter dropdown list control and open the Property Sheet, Actions group.
Step 2: Select the ‘Initialize’ event and enter this formula.
= “Berlin”
[image:]
[image:]
[image:]
Step 3: Build and run your application.

[bookmark: _Ref259703048][bookmark: _Toc414873048]Pre-Select Multiple Items in a FieldFilter List Box
Multiple items can be pre-selected in a list box by using the Property Sheet, Actions group for the “Initialize” event. For example, you might initialize a multi select list box filter with pre-selected items via the “Initialize” event.
Step 1: In the Layout Editor, select the filter dropdown list control and open the Property Sheet, Actions group.
Step 2: Select the ‘Initialize’ event and enter list of primary key Id’s separated by a comma. In the example below, three customer names will be selected based on their primary keys: ALFKI, BLONP and AROUT.
= “ALFKI,BLONP,AROUT”
[image:]
[image:]
[image:]
Step 3: Build and run your application.
Note: As we need a list box to do the above customization, change the ProductID filter‘s control type to a list box and its Selection Mode property in the Property Sheet to multiple.

[bookmark: _Ref259703035][bookmark: _Toc414873049]Remove Please Select from Dropdown List
The ** Please Select ** selection from a dropdown list control can be easily removed by deleting the “{Txt:PleaseSelect}” row from the “Populate from Static list” event.
Step 1: In the Layout Editor, select a dropdown list control and open the Property Sheet, Actions group.
Step 2: Select the ‘Populate from Static list’ event and remove the “{Txt:PleaseSelect}” row.
[image:]
[image:]
[image:]
Step 3: Build and run your application.

[bookmark: _Ref259703025][bookmark: _Toc414873050]Retrieve Information from a Cookie
Values stored in a cookie variable can be displayed in any label, literal, textbox or dropdown list control using the COOKIE function. For example, to set the ContactName field on a Customer record to the value of the ContactName cookie variable, specify this formula for the “Initialize when When Editing Record” event:
= COOKIE(“ContactName”)
[image:]
[image:]
[image:]
Filter table using cookie value
The COOKIE function can also be used in the Query Wizard to filter a table based on the value in a cookie variable.
Step 1: In the Layout Editor, select a table control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents. For example, you can show products whose category name is stored in a cookie variable with this formula:
= COOKIE(“CategoryName”)
[image:]
[image:]
[image:]
Step 4: Build and run your application.

[bookmark: _Ref259703022][bookmark: _Toc414873051]Retrieve Information from a Session Variable
The values stored in a session variable can be displayed in any label, literal, textbox or dropdown list control using the SESSION function. For example, to set the email address field on a Customers record to the value of the MyEmailAddress session variable, specify this formula for the “Initialize when Adding Record” event:
= SESSION(“MyEmailAddress”)
[image:]
[image:]
[image:]
Filter table using session variable
The SESSION function can also be used in the Query Wizard to filter the items displayed in a table.
Step 1: In the Layout Editor, select a table control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents, e.g.:
= SESSION(“MyCity”)
[image:]
Step 4: Build and run your application.
Alternatively, you can constrain a FieldFilter control by specifying a formula for the “Populate from Database” event.

[bookmark: _Ref259703019][bookmark: _Toc414873052]Retrieve Information from the Cache
The values stored in a cache variable can be displayed in any label, literal, textbox or dropdown list control using the CACHE function.
Step 1: In the Layout Editor, select a table control.
Step 2: In the Property Sheet, Queries section, select the appropriate query and open the Query Wizard (Edit…).
Step 3: In the Query Wizard, add a new WHERE clause containing a formula that restricts the contents. For example, to display the contents related to the most recently placed order, specify a formula in the Query Wizard, e.g.:
= CACHE(“OrderID”)
[image:]
Step 4: Build and run the application.

[bookmark: _Ref259703023][bookmark: _Toc414873053]Save Information in a Cookie
You can save the value of any textbox, label, literal or dropdown field into a cookie variable. Note that cookie variables are valid till the expiry date-time.
In the example below, the MyUsername cookie variable is set to the user name of the signed-in user by specifying the formula below for “Save into Cookie” event.
Step 1: In the Layout Editor, select a control and open the Property Sheet, Actions group.
Step 2: Select the ‘Save into Cookie’ event and enter a formula, e.g.:
= USERNAME()
[image:]
[image:]
[image:]
Step 3: Build and run your application.
When saving data into a cookie variable, the data can be retrieved from a textbox, label or literal control; or from the database table. This formula retrieves the value from the “UserName1” control:
= UsersRecordControl.UserName1.Text
UserName1.Text refers to the value for the literal UserName1.

[bookmark: _Ref259703021][bookmark: _Toc414873054]Save Information in a Session Variable
You can save the value of any textbox, label, literal or dropdown control into a session variable. Note that session variables are valid only for the current session, and sessions are recycled when a user logs out, as well as when the Microsoft Internet Information Server (IIS) reaches certain thresholds as specified by the administrator.
In the example below, the MyCustomerID session variable is set to the value of a literal control.
Step 1: In the Layout Editor, select a control and open the Property Sheet, Actions group.
Step 2: Select the ‘Save into Session variable’ event and enter a formula, e.g.:
= CustomersRecordControl.CustomerID.Text
 [image:]
[image:]
[image:]
Step 3: Build and run the application.
When saving data into a session variable from a web page, the data can be retrieved from textbox, label or literal controls; or from the database table. An alternative formula for the session variable is:
= CustomerID
CustomerID refers to the database field for the current customer record.

[bookmark: _Ref259703049][bookmark: _Toc414873055]Set Content of FieldFilter Dropdown
The contents of a FieldFilter control can be set to items entered in a static list. For example, you could easily create a static list of product values to use as a filter.
Step 1: In the Layout Editor, select a FieldFilter dropdown list control and open the Property Sheet, Actions group.
Step 2: Select the ‘Populate from Static list’ event and enter a list of values and their corresponding display values.
 [image:]
[image:]
[image:]
Step 3: Build and run your application.

[bookmark: _Ref259703055][bookmark: _Toc414873056]Validate Field Value
The validation logic for a field in an editable control can be easily customized by specifying a formula for the “Validate When Saving record” event. For example, this formula checks whether the user has entered a ContactName:
= IF(CustomersRecordControl.ContactName.Text="" ,"Enter a value for Contact Name","")
Returning an empty string implies the input is valid and the record should be saved.
[image:]
[image:]
[image:]
You can also perform multiple validations on the same field. For example, this formula only allows passwords whose length is between 5 and 10.
= IF(LEN(UsersRecordControl.Password.Text) > 10 OR LEN(UsersRecordControl.Password.Text) < 5 , "Length of password should be between 5 and 10 characters", "")
[image:]
[image:]
[image:]
Validation formulas may also contain functions. In the validation formula, database values can be used directly by using the column name. For example, this validation formula requires a value to be present in the Zip Code field in the database for US addresses.
= IF(country=“USA” and ISBLANK(zipcode), “Zip Code must be provided for US addresses”, ““)

[bookmark: _Ref259703057][bookmark: _Toc414873057]Validate Related Textbox Fields and Display Custom Error Message
Many times, your application will need to validate related fields, for example to:
· Validate related fields where values must be specified in one field or the other.
· Validate dependent fields where the value of one field is dependent on the value of another field.
This validation formula for the “Validate when Saving record” event returns an error if the City field contains San Francisco and the Country field is anything other than USA.
= IF(CustomersRecordControl.City.Text = "San Francisco" AND CustomersRecordControl.Country.text <> "USA", "Conflicting choices for City and Country", "")
If the condition evaluates to true then an empty string (““) is returned, indicating the validation is successful and the record should be saved into the database.
[image:]
[image:]
[image:]

[bookmark: _Ref259703032][bookmark: _Toc414873058]Virtual Calculated Field in Table Record
You can display a calculated value by operating on more than one field in any label, literal, textbox or dropdown list control. For example, the extended price of an order can be displayed in a literal control using this formula for the ‘Initialize when showing record’ event:
= FORMAT(PARSEDECIMAL(Order_DetailsRecordControl.UnitPrice.Text) * PARSEDECIMAL(Order_DetailsRecordControl.Quantity.Text),"c")
Because the values of the UnitPrice and Quantity field value controls are text, we parse them to find their decimal values and then calculate the product. The FORMAT function is used to display the product as a currency.
[image:]
[image:]
[image:]
[bookmark: _Toc259526322]
[bookmark: _Toc414873059][bookmark: _Toc259526335]Operators
Related topics
IF
Arithmetic operators (*, +, -, %, /, ^)
Boolean operators (AND, OR, XOR, NOT)
Comparison operators (=, <>, >, <, >=, <=)
String Operators (+)

[bookmark: _Toc259526412][bookmark: _Ref259635383][bookmark: _Toc414873060]IF
Evaluates the expression and returns the value depending on the result of the evaluation.
Syntax
= IF(expression, value1, value2)
Arguments
	expression
	An expression which is to be evaluated. The expression can be specified as an equality (e.g., USERNAME() = “lskywalker”), an inequality (e.g., Quantity>10), as a comination of expressions (e.g., USERNAME() = “lskywalker” OR Quantity>10).

Examples
	Example
	Returns

	= IF(USERNAME() = “lskywalker”, “Luke”, “Anakin”)
	“Luke” if expression evaluates to True else returns “Anakin”.

	= IF(Quantity > 10, 10, 5)
	10 if quantity is more than 10, else returns 5.

	= IF(BirthDate >= Today(),
 “The BirthDate should be lesser than the system date",
 “Valid Date”)
	

	= IF(ROLEID = 6, “Customer Support”, ““)
=IF(PARSEINTEGER(Order_DetailsTableControlRow.Quantity.Text) < 0, "" + Order_DetailsTableControlRow.Quantity.Text + "", Order_DetailsTableControlRow.Quantity.Text)
	

[bookmark: _Toc259526413][bookmark: _Ref259635385][bookmark: _Toc414873061]Arithmetic operators (*, +, -, %, /, ^)
Arithmetic operators perform arithmetic operations, such as addition, subtraction, multiplication, division and to calculate power of one value raised to the power of other.
Syntax
= value1 OPERATOR value2
Arguments
	value1
	A number to be operated upon. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), or as the value of a variable (e.g, UnitPrice)

	value2
	A number to be operated upon. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), or as the value of a variable (e.g, UnitPrice)

Examples
	Example
	Returns

	= 2 ^ 10
	The value of 2 raised to the power of 10.

	= UnitPrice + 10
	The value of UnitPrice incremented by 10.

	= UnitPrice * Quantity
	The product of the value of UnitPrice and Quantity.

[bookmark: _Toc259526414][bookmark: _Ref259635389][bookmark: _Toc414873062]Boolean operators (AND, OR, XOR, NOT)
Can be used to perform Boolean operations like AND, OR, XOR and NOT.
Syntax
= NOT(expression1)
= expression1 OPERATOR expression2
Arguments
	expression1
	An expression which is to be operated upon. The expression can be specified as an equality (e.g., USERNAME() = “lskywalker”), an inequality (e.g., Quantity > 10), as a combination of expressions (e.g., USERNAME() = “lskywalker” OR Quantity>10).

	expression2
	An expression which is to be operated upon. The expression can be specified as an equality (e.g., USERNAME() = “lskywalker”), an inequality (e.g., Quantity > 10), as a combination of expressions (e.g., USERNAME() = “lskywalker” OR Quantity > 10).

Examples
	Example
	Returns

	= Not(UnitPrice > 20)
	False if the UnitPrice is greater than 20 else returns True

	= (Quantity > 10) OR (UnitPrice>10)
	True if either of the Quantity or the UnitPrice are greater than 10.

	= (Quantity > 10) XOR False
	The XOR value of the expression and the boolean False.

[bookmark: _Toc260418838][bookmark: _Ref260676180][bookmark: _Toc414873063]Comparison operators (=, <>, >, <, >=, <=)
Can be used to perform comparison operation like equalto, not equalto, greater than, less than, greater than equalto and less than equalto.
Syntax
= value1 OPERATOR value2
Arguments
	value1
	A value to be operated upon. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), a string (e.g., “test”), a character(‘a’) or as the value of a variable (e.g, UnitPrice)

	value2
	A value to be operated upon. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), a string (e.g., “test”), a character(‘a’) or as the value of a variable (e.g, UnitPrice)

Examples
	Example
	Returns

	= UnitPrice <> 10
	The Boolean value True if the UnitPrice is not equal to 10.

	= UnitPrice = 10
	The Boolean value True if the UnitPrice is equal to 10.

	= UnitPrice > 15
	The Boolean value True if UnitPrice is greater than 15.

[bookmark: _Toc259526415][bookmark: _Ref259635390][bookmark: _Toc414873064]String Operators (+)
Returns concatenated strings.
Syntax
= value1 + value2
Arguments
	value1
	A value which has to be concatenated. It can contain strings (“Iron Speed”, “1234”), or values of a variable (e.g, ProductName).

	value2
	A value which has to be concatenated. It can contain strings (“Iron Speed”, “1234”), or values of a variable (e.g, ProductName).

Examples
	Example
	Returns

	= “Iron” + “Speed” + “Designer”
	The string containing the words concatenated together.

	= FirstName + “.” + “LastName”
	The value of FirstName and LastName concatenated with a “.” as separator.

	= “$” + “1234”
	$1234.

[bookmark: _Toc414873065]Boolean Functions
Related topics
AND1
NOT1
OR1

[bookmark: _Toc259526336][bookmark: _Ref259630657][bookmark: _Toc414873066]AND1
Returns the AND value of the values passed to the function.
Syntax
= AND1(value)
Parameters
	args
	An array whose AND value is to be determined. The array can contain expressions (e.g., 1+1=2), boolean values (e.g., true), strings (“true”, “false”), or numbers(-15)

Return Type
Boolean
In the case of an error, the function displays an error message: “AND1(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= AND1(True, False)
	False

	= AND1(1+1=2, 2+2=5)
	False

	= AND1(“True”, “False”)
	False

	= OR1(AND1(Quantity > 10, Quantity < 15), Discount > 5)
	True if either the Quantity is between the numbers 10 and 15 or if Discount is greater than 5.

	= NOT(AND1(Quantity > 10, Quantity < 15))
	True if the Quantity does not lie between 10 and 15.

[bookmark: _Toc259526338][bookmark: _Ref259630662][bookmark: _Toc414873067]NOT1
Returns the NOT value of the values passed to the function.
Syntax
= NOT1(value)
Parameters
	value
	A value whose NOT is to be determined. The value can be an expression (e.g., 1+1=2), a boolean (e.g., true), a string (“true”, “false”), or a number(-15)

Return Type
Boolean
In the case of an error, the function displays an error message: “NOT1(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= NOT1(True)
	False

	= NOT1(2+1=2)
	True

	= NOT1(“True”)
	False

	= AND1(NOT1(Quantity > 10), Discount > 5)
	True if the Quantity is lesser than or equal to 10 and the Discount is greater than 5.

	= NOT1(OR1(Quantity > 10, Quantity < 15))
	True if the Quantity is not greater than 10 and is not lesser than 15.

[bookmark: _Toc259526337][bookmark: _Ref259630659][bookmark: _Toc414873068]OR1
Returns the OR value of the values passed to the function.
Syntax
= OR1(value)
Parameters
	args
	An array who’s OR value is to be determined. The array can contain expressions (e.g., 1+1=2), boolean values (e.g., true), strings (“true”, “false”), or numbers(-15)

Return Type
Boolean
In the case of an error, the function displays an error message: “OR1(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= OR1(True, False)
	True

	= OR1(2+1=2, 2+2=5)
	False

	= OR1(“True”, “False”)
	True

	= OR1(AND1(Quantity > 10, Quantity < 15), Discount > 5)
	True if either the Quantity is between the numbers 10 and 15 or if Discount is greater than 5.

	= NOT(OR1(Quantity > 10, Quantity < 15))
	True if either the Quantity is not greater than 10 and is not lesser than 15.

[bookmark: _Toc259526389][bookmark: _Toc414873069][bookmark: _Toc259526355][bookmark: _Toc259526339]Data Conversion Functions
Related topics
PARSEDATE
PARSEDECIMAL
PARSEINTEGER

[bookmark: _Toc259526392][bookmark: _Ref259635310][bookmark: _Toc414873070]PARSEDATE
Returns the date value of the object passed to the function. If the time is not included in the value, the function returns the time as 12:00:00 AM.
Syntax
= PARSEDATE(value)
Parameters
	value
	A value whose date value is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime
Examples
	Example
	Returns

	= PARSEDATE(“02/19/2009 14:30:30.3”)
	2/19/2009 2:30:30 PM

	= PARSEDATE("2009-02-19 14:30:30.3")
	2/19/2009 2:30:30 PM

	= PARSEDATE(“19 Feb 2009”)
	2/19/2009 12:00:00 AM

	= PARSEDATE(ShippedDate)
	The hours extracted from the value of ShippedDate. If any entries are NULL then returns date as 1/1/0001 12:00:00 AM.

	= PARSEDATE(“abcd”)
	Displays message “ERROR: The string was not recognized as a valid DateTime. There is an unknown word starting at index 0.”

[bookmark: _Toc259526390][bookmark: _Ref259635305][bookmark: _Toc414873071]PARSEDECIMAL
Returns the decimal value of the object passed to the function.
Syntax
= PARSEDECIMAL(value)
Parameters
	value
	A number whose decimal value is to be determined. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal
Examples
	Example
	Returns

	= PARSEDECIMAL(-3)
	-3

	= PARSEDECIMAL(3)
	3

	= PARSEDECIMAL(“$1,234”)
	1234

	= PARSEDECIMAL(“$-1,234.57”)
	-1234.57

	= PARSEDECIMAL(“98%”)
	.98

	= PARSEDECIMAL(UnitPrice)
	The decimal value of the UnitPrice

	= PARSEDECIMAL(“abcd”)
	Displays message “ERROR: Input string was not in a correct format”

[bookmark: _Toc259526391][bookmark: _Ref259635307][bookmark: _Toc414873072]PARSEINTEGER
Returns the integer value of the object passed to the function.
Syntax
= PARSEINTEGER(value)
Parameters
	Value
	A number whose integer value is to be determined. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Long
Examples
	Example
	Returns

	= PARSEINTEGER(-3.5)
	-4

	= PARSEINTEGER(“3.5”)
	4

	= PARSEINTEGER(“$1,234”)
	1234

	= PARSEINTEGER(“$-1,234.57”)
	-1234

	= PARSEINTEGER(“200%”)
	2

	= PARSEINTEGER(UnitPrice)
	The integer value of the UnitPrice variable

	= PARSEINTEGER(“abcd”)
	Displays message “ERROR: Input string was not in a correct format”

[bookmark: _Toc414873073]Database Functions
Related topics
GETCOLUMNVALUE
GETCOLUMNVALUES
LOOKUP

[bookmark: _Ref260322373][bookmark: _Toc414873074]GETCOLUMNVALUE
Returns the value of a column by using the table name and value of the primary key which indicates the specific row from which value is to be derived. An application of this function is on the OrderDetailsTableControl of the AddOrders page. When the user selects the ProductID while adding a new record, the value in the UnitPrice can be updated using this function:
= GETCOLUMNVALUE("Products",Order_DetailsTableControlRow.ProductID.SelectedValue, "UnitPrice")
Syntax
= GETCOLUMNVALUE(tableName, keyValue, fieldName)
Parameters
	tableName
	A string which represents the name of the table from which the value is to be fetched. This table must be included in the application in order for GETCOLUMNVALUE to return a value.
The TableName parameter is actually table class name without suffix instead of table name. Sometime table class name and table name are not the same. For example, if the table name has a space such as “Order Details”, the table class name will be “Order_DetailsTable”. Table class name without suffix is “Order_Details”. The correct value of tableName parameter is Order_Details. To find the correct table class name, refer to the Business Layer.
[image: cid:image001.png@01CBD998.FF6979B0]
As you see, there is a file called “Order_DetailsTable”. This is how you find the table class name. For tables, the suffix is “Table”, For views, the suffix is “View”. For custom queries, the suffix is “Query”. These suffixes should not be presented on the tableName parameter.

	keyValue
	The value of the primary key of the table. The key can either be an XML KeyValue structure or a string that is the Id of the record or a decimal value.

	fieldName
	The name of the field whose value is to be found.
The FieldName parameter is actually a field code name. Sometimes the field name and field code name are not the same. For example, if the field name is called “ID”, the code name will be “ID0”. To find the code name for the fields, first locate the base table class in the business layer. For example, for the table name called “Users”, go to BaseUsersTable.vb(cs). If this file is not shown on Application Explorer, please make sure your application has been built and set Application Explorer to display all files by selecting View->Display all source files.
Then look into the Initialize method, you should see code name is defined in this method.

Return Type
Object
Examples
	Example
	Returns

	= GETCOLUMNVALUE(“Customers”, “ALFKI”, “ContactName”)
	The name of the customer corresponding to the CustomerID “ALFKI”.

	= GETCOLUMNVALUE(“Orders”, URL(“Orders”), “OrderDate”)
	The OrderDate for the OrderID passed as a URL value to the page.

	= GETCOLUMNVALUE(“UserRoles”, "<key><cv><c>UserID</c><v>" + URL("paramUserID") + "</v></cv><cv><c>RoleID</c><v>" + URL("paramRoleID") + "</v></cv></key>", “Permissions”)
	Uses the XML KeyValue structure to pass the UserId and RoleId to retrieve the Permissions field value. The UserId and the RoleId values are retrieved the URL parameters.

[bookmark: _Ref260322374][bookmark: _Toc414873075]GETCOLUMNVALUES
Returns an array of values which satisfy the wherestring from the specified table. An application of this function is on the ShowOrdersTable page to display the total orders placed by a customer, e.g.:
= GETCOLUMNVALUES("Orders", "OrderID", "CustomerID = '" + CustomerID +"'").LENGTH
Syntax
= GETCOLUMNVALUES(tableName, fieldName)
= GETCOLUMNVALUES(tableName, fieldName, whereString)
Parameters
	tableName
	A string which represents the name of the table from which the value is to be fetched. This table must be included in the application in order for GETCOLUMNVALUES to return a value.
The TableName parameter is actually table class name without suffix instead of table name. Sometime table class name and table name are not the same. For example, if the table name has a space such as “Order Details”, the table class name will be “Order_DetailsTable”. Table class name without suffix is “Order_Details”. The correct value of tableName parameter is Order_Details. To find the correct table class name, refer to the Business Layer.
[image: cid:image001.png@01CBD998.FF6979B0]
As you see, there is a file called “Order_DetailsTable”. This is how you find the table class name. For tables, the suffix is “Table”, For views, the suffix is “View”. For custom queries, the suffix is “Query”. These suffixes should not be presented on the tableName parameter.

	fieldName
	The name of the field whose value is to be found.
The FieldName parameter is actually a field code name. Sometimes the field name and field code name are not the same. For example, if the field name is called “ID”, the code name will be “ID0”. To find the code name for the fields, first locate the base table class in the business layer. For example, for the table name called “Users”, go to BaseUsersTable.vb(cs). If this file is not shown on Application Explorer, please make sure your application has been built and set Application Explorer to display all files by selecting View->Display all source files.
Then look into the Initialize method, you should see code name is defined in this method.

	whereString
(optional)
	A string which represents the where clause to filter the contents of the table using a specific condition.

Return Type
String[]
Examples
	Example
	Returns

	= GETCOLUMNVALUES("Employees", "City", "Country = 'USA'")
	A list of all Cities in the US from the Employees table.

	= GETCOLUMNVALUES(“Orders”, “OrderID”, “ShipCountry=“ + “’” + URL(“MyShipCountry”) + “’”)
	All the OrderIDs for which the ShipCountry is passed as the URL value.

	= STRING.JOIN(“,”, GETCOLUMNVALUES(“Employees”, “City”))
	A concatenated version of all the cities in the Employees table.

	= STRING.JOIN(",",GETCOLUMNVALUES("SalesRep", "SalesRepID", "SalesRepID=" + UserId()))
	This shows the joined values from all the records retrieved.

[bookmark: _Ref283723665][bookmark: _Toc414873076]LOOKUP
Retrieves values from a data source.
Note: Formulas containing LOOKUP() functions are not automatically changed when you modify the underlying Data Source. You must manually update LOOKUP() calls to match changes you make to the Data Source. For example, a single Data Source can be used to retrieve and hold multiple column values from a single SQL query, a significant performance gain over fetching individual values from multiple SQL queries. In this case, the LOOKUP() function can be used to retrieve different column values.
Syntax
= LOOKUP(dataSourceName, idValue)
= LOOKUP(dataSourceName, idValue, formatString)
= LOOKUP(dataSourceName, rowNumber, idValue, idColumn, valueColumn)
Parameters
	dataSourceName
	A string which represents the name of the data source.

	idValue
	The ID value, or key, used to select the data source record. If idColumn is not specified, then LOOKUP() uses the first column (column 0) to match idValue.

	formatString
	The format string applied to the retrieved value.

	rowNumber
	Specifies the row to be retrieved. Use ‘null’ if you do not want to specify a specific row number.
If you specify ‘null’ for rowNumber, LOOKUP() retrieves a record from the Data Source containing the ‘idValue’ value in the column specified by the ‘idColumn’ parameter.

	idColumn
	Number or string specifying the column containing the ID or key value used to select the appropriate row. If idColumn is a number, LOOKUP() uses that column number, which is 0 based (0 is the first column, 1 is the second column, etc.). Otherwise, idColumn is treated as a column name string.
If you edit your Data Source, columns may be rearranged. So if you plan to edit Data Sources, it’s best to use column names rather than column numbers.

	valueColumn
	String specifying the column name containing the data element to be retrieved. LOOKUP() returns the value contained in the ‘valueColumn’ column.

Return Type
String[]
Examples
	Example
	Returns

	=LOOKUP(UnitPriceMinQuery,null,EmployeerID,”EmployeeID”,”UnitPriceMin”)
	Searches the UnitPriceMinQuery data source for the record containing EmployeeID in the column named ‘EmployeeID’.
Returns the value located in the field named ‘UnitPriceMin”.

	=LOOKUP(UnitPriceMinQuery,null,EmployeeID,0,1)
	Searches the UnitPriceMinQuery data source for the record containing EmployeeID in column 0 (the first column).
Returns the value in column 1 (the second column).

Since LOOKUP() functions simply return values, they can be combined in more complex formulas. For example, this combination calculates a percentage by dividing two the values returned by two LOOKUP() functions:
= Format(ParseDecimal(LOOKUP(UnitPriceSumQuery1, EmployeeID)) / ParseDecimal(LOOKUP(UnitPriceSumQuery,"")), "p")
PARSEDECIMAL and FORMAT are needed because LOOKUP returns either a string or an object. PARSEDECIMAL converts the values returned by LOOKUP into numbers, and FORMAT converts the percentage into a displayable string.

[bookmark: _Toc414873077]DateTime Functions
Related topics
ENDOFCURRENTMONTH
ENDOFCURRENTQUARTER
ENDOFCURRENTWEEK
ENDOFCURRENTYEAR
ENDOFLASTMONTH
ENDOFLASTQUARTER
ENDOFLASTWEEK
ENDOFLASTYEAR
ENDOFMONTH
ENDOFQUARTER
ENDOFWEEK
ENDOFYEAR
HOUR
MINUTE
MONTH
NOW
SECOND
STARTOFCURRENTMONTH
STARTOFCURRENTQUARTER
STARTOFCURRENTWEEK
STARTOFCURRENTYEAR
STARTOFLASTMONTH
STARTOFLASTQUARTER
STARTOFLASTWEEK
STARTOFLASTYEAR
STARTOFMONTH
STARTOFQUARTER
STARTOFWEEK
STARTOFYEAR
TIME1
TODAY
YEAR
YESTERDAY

[bookmark: _Toc259526372][bookmark: _Ref259630847][bookmark: _Toc414873078]ENDOFCURRENTMONTH
Returns the end date of the current month treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFCURRENTMONTH()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFCURRENTMONTH()
	If SYSTEM date is 1/28/2010: 1/31/2010 11:59:59 PM

	= ENDOFCURRENTMONTH().Month
	The current month.

	= ENDOFCURRENTMONTH().AddDays(1)
	The start date of the next month.

	= ENDOFCURRENTMONTH().AddDays(1).Month
	The next month.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526378][bookmark: _Ref259630998][bookmark: _Toc414873079]ENDOFCURRENTQUARTER
Returns the end date of the current quarter treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFCURRENTQUARTER()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFCURRENTQUARTER()-
	If SYSTEM date is 1/28/2010: 3/31/2010 11:59:59 PM

	= ENDOFCURRENTQUARTER().Month
	The month for the start of current quarter.

	= ENDOFCURRENTQUARTER().AddDays(1)
	The start date of next quarter.

	= ENDOFCURRENTQUARTER().Add Days(1).Month
	The month for the start of next quarter.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526368][bookmark: _Ref259630836][bookmark: _Toc414873080]ENDOFCURRENTWEEK
Returns the end date of the current week. The time returned is 11:59:59 PM.
Syntax
= ENDOFCURRENTWEEK()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFCURRENTWEEK()
	If SYSTEM date is 1/28/2010: 2/6/2010 11:59:59 PM.

	= ENDOFCURRENTWEEK().Day
	The day for end of the current week.

	= ENDOFCURRENTWEEK().AddDays(7)
	The date and time for the end of the next week.

	= ENDOFCURRENTWEEK().AddDays(7).Day
	The day for the end of the next week.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526382][bookmark: _Ref259630865][bookmark: _Toc414873081]ENDOFCURRENTYEAR
Returns the end date of the current year treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFCURRENTYEAR()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFCURRENYEAR()
	As SYSTEM date is 1/28/2010, 12/31/2010 11:59:59 PM

	= ENDOFCURRENTYEAR().Year
	The current year.

	= ENDOFCURRENTYEAR().AddDays(1)
	The start date of next year.

	= ENDOFCURRENTYEAR().AddDays(1).Year
	The next year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526374][bookmark: _Ref259630850][bookmark: _Toc414873082]ENDOFLASTMONTH
Returns the end date of the previous month treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFLASTMONTH()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFLASTMONTH()-
	As SYSTEM date is 1/28/2010, 12/31/2009 11:59:59 PM.

	= ENDOFLASTMONTH().Month
	The last month.

	= ENDOFLASTMONTH().AddDays(1)
	The start date of current month.

	= ENDOFLASTMONTH().AddDays(1).Year
	The current year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526380][bookmark: _Ref259630862][bookmark: _Toc414873083]ENDOFLASTQUARTER
Returns the end date of the previous quarter treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFLASTQUARTER()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFLASTQUARTER()
	As SYSTEM date is 1/28/2010, 12/31/2009 11:59:59 PM

	= ENDOFLASTQUARTER().Month
	The month for the end of previous quarter.

	= ENDOFLASTQUARTER().AddDays(1)
	The start date of current quarter.

	= ENDOFLASTQUARTER().AddMonths(1). Month
	The month for the start of current quarter.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Ref260670317][bookmark: _Toc414873084]ENDOFLASTWEEK
Returns the end date of the previous week. The time returned is 12:00 AM.
Syntax
= ENDOFLASTWEEK()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFLASTWEEK()
	If SYSTEM date is 1/28/2010: 1/23/2010 12:00:00 AM.

	= ENDOFLASTWEEK().Day
	The day for end of the previous week.

	= ENDOFLASTWEEK().AddDays(-7)
	The date and time for the end of the week before previous week.

	= ENDOFLASTWEEK().AddDays(-7).Day
	The day for the end of the week before previous week.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526386][bookmark: _Ref259630874][bookmark: _Toc414873085]ENDOFLASTYEAR
Returns the end date of the previous year treating the system date as current date. The time returned is 11:59:59 PM.
Syntax
= ENDOFLASTYEAR()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFLASTYEAR()
	As SYSTEM date is 1/28/2010, 12/31/2009 11:59:59 PM

	= ENDOFLASTYEAR().Year
	The previous year.

	= ENDOFLASTYEAR().AddDays(1)
	The start date of current year.

	= ENDOFLASTYEAR().AddDays(1).Year
	The current year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526370][bookmark: _Ref259630840][bookmark: _Toc414873086]ENDOFMONTH
Returns the end date of the month for the date passed to the function. The time returned is 11:59:59 PM.
Syntax
= ENDOFMONTH(valueDate)
Parameters
	valueDate
	A date time value whose end date of the month is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFMONTH(“2/2/2010”)
	2/28/2010 11:59:59 PM

	= ENDOFMONTH(“2/2/2010”).MONTH
	The month extracted from end of the month.

	= ENDOFMONTH(“2/2/2010”).ADDDAYS(1)
	The end date of the month next to the date passed to the function.

	= STARTOFMONTH(“2/2/2010”).ADDDAYS(1).MONTH
	The value of the month next to the date passed to the function.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526376][bookmark: _Ref259630853][bookmark: _Toc414873087]ENDOFQUARTER
Returns the end date of the quarter for the date passed to the function. The time returned is 12:00:00 AM.
Syntax
= ENDOFQUARTER(valueDate)
Parameters
	valueDate
	A date time value whose end date of the quarter is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFQUARTER("02/19/2009")
	3/31/2009 11:59:59 PM

	= ENDOFQUARTER("02/19/2009").MONTH
	The month for the end of quarter for the given date.

	= ENDOFQUARTER("02/19/2009").ADDMONTHS(3)
	The end date of quarter next to the given date.

	= ENDOFQUARTER("02/19/2009").AddMonths(3).Month
	The month for the end of quarter next to the given date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526366][bookmark: _Ref259630831][bookmark: _Toc414873088]ENDOFWEEK
Returns the end date of the week for the date passed to the function. If the date passed to the function is in wrong format then returns the system’s date. The time returned is 11:59:59 PM.
Syntax
= ENDOFWEEK(valueDate)
Parameters
	valueDate
	A date time value whose end date of the week is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFWEEK(“02/19/2009 14:30:30.3”)
	2/21/2009 11:59:59 PM

	= ENDOFWEEK ("2009-02-19 14:30:30.3")
	2/21/2009 11:59:59 PM

	= ENDOFWEEK(“abcd”)
	The end of the week for the system date.

	= ENDOFWEEK(ShippedDate)
	The end of the week for the value of ShippedDate. If any entries are NULL then returns the start of the week for the system’s date.

	= ENDOFWEEK(“02/19/2009”).Day
	The day for end of the week for the given date.

	= ENDOFWEEK(“02/19/2009”).AddDays(-7)
	The date and time for the end of the week previous to the specified date.

	= ENDOFWEEK(“02/19/2009”).AddDays(-7).Day
	The day for the end of the week previous to the specified date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526384][bookmark: _Ref259630870][bookmark: _Toc414873089]ENDOFYEAR
Returns the end date of the year passed to the function. The time returned is 11:59:59 PM.
Syntax
= ENDOFYEAR(valueDate)
Parameters
	valueDate
	A date time value whose start date of the week is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= ENDOFYEAR(“2/2/2010”)
	1/1/2010 12:00:00 AM

	= ENDOFYEAR(“2/2/2010”).Year
	The year extracted from end of the year.

	= ENDOFYEAR(“2/2/2010”).AddDays(1)
	The start date of the year next to the given date.

	= ENDOFYEAR(“2/2/2010”).AddDays(1).YEAR
	The year next to the given date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526356][bookmark: _Ref259630811][bookmark: _Toc414873090]HOUR
Returns the number of hours from the DateTime value passed to the function. If the time is not passed to the function along with the date then the function returns the hours extracted from system time.
Syntax
= HOUR(value)
Parameters
	value
	A date time value from which the hours are to be extracted. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3",
 "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
Integer
In the case of an error, the function displays an error message: “HOUR(value): Error message”
Examples
	Example
	Returns

	= HOUR(“02/19/2009 14:30:30.3”)
	14

	= HOUR("2009-02-19 14:30:30.3")
	14

	= HOUR(“19 Feb 2009”)
	The hours extracted from system time.

	= HOUR(ShippedDate)
	The hours extracted from the value of ShippedDate. If any entries are NULL then returns the hours extracted from system time.

[bookmark: _Toc259526357][bookmark: _Ref259630812][bookmark: _Toc414873091]MINUTE
Returns the minutes from the DateTime value passed to the function. If the time is not passed to the function along with the date then the function returns the minutes extracted from system time.
Syntax
= MINUTE(value)
Parameters
	value
	A date time value from which the minutes are to be extracted. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3",
 "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
Integer
In the case of an error, the function displays an error message: “MINUTE(value): Error message”
Examples
	Example
	Returns

	= MINUTE(“02/19/2009 14:30:30.3”)
	30

	= MINUTE("2009-02-19 14:30:30.3")
	30

	= MINUTE (“19 Feb 2009”)
	The minutes extracted from system time.

	= MINUTE (ShippedDate)
	The minutes extracted from the value of ShippedDate. If any entries are NULL then returns the minutes extracted from system time.

[bookmark: _Toc259526360][bookmark: _Ref259630818][bookmark: _Toc414873092]MONTH
Returns the month from the DateTime value passed to the function. If the date is in wrong format then the function returns the month extracted from system time.
Syntax
= MONTH(value)
Parameters
	value
	A date time value from which the month has to be extracted. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3",
 "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
Integer
In the case of an error, the function displays an error message: “MONTH(value): Error message”
Examples
	Example
	Returns

	= MONTH(“02/19/2009 14:30:30.3”)
	2

	= MONTH("2009-02-19 14:30:30.3")
	2

	= MONTH(“abcd”)
	The month extracted from system time.

	= MONTH(ShippedDate)
	The month extracted from the value of ShippedDate. If any entries are NULL then returns the month extracted from the system time.

[bookmark: _Toc259526362][bookmark: _Ref259630822][bookmark: _Toc414873093]NOW
Returns the SYSTEM date and time.
Syntax
= NOW()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= NOW()
	The present system date and time, e.g. 1/28/2010 11:43:00 AM

	= NOW().Hour
	The current hours.

	= NOW().AddYears(-25)
	The date and time twenty five years ago.

	= NOW().AddYears(-25).Year
	The year twenty five years ago.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526358][bookmark: _Ref259630814][bookmark: _Toc414873094]SECOND
Returns the seconds from the DateTime value passed to the function. If the time is not passed to the function along with the date then the function returns the seconds extracted from system time.
Syntax
= SECOND(value)
Parameters
	value
	A date time value from which the seconds are to be extracted. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3",
 "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
Integer
In the case of an error, the function displays an error message: “SECOND(value): Error message”
Examples
	Example
	Returns

	= SECOND(“02/19/2009 14:30:30.3”)
	30

	= SECOND("2009-02-19 14:30:30.3")
	30

	= SECOND (“19 Feb 2009”)
	The seconds extracted from system time.

	= SECOND (ShippedDate)
	The seconds extracted from the value of ShippedDate. If any entries are NULL then returns the seconds extracted from system time.

[bookmark: _Toc259526367][bookmark: _Ref259630834][bookmark: _Toc414873095]STARTOFCURRENTWEEK
Returns the start date of the current week. The time returned is 12:00 AM.
Syntax
= STARTOFCURRENTWEEK()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFCURRENTWEEK()
	If SYSTEM date is 1/28/2010: 1/1/2010 12:00:00 AM.

	= STARTOFCURRENTWEEK().Day
	The day for start of the current month.

	= STARTOFCURRENTWEEK(“02/19/2009”).AddDays(-7)
	The date and time for the start of the previous week.

	= STARTOFCURRENTWEEK(“02/19/2009”).AddDays(-7).Day
	The day for the start of the previous week.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526371][bookmark: _Ref259630843][bookmark: _Toc414873096]STARTOFCURRENTMONTH
Returns the start date of the current month treating the system date as current date. The time returned is 12:00 AM.
Syntax
= STARTOFCURRENTMONTH()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFCURRENTMONTH()
	If SYSTEM date is 1/28/2010: 1/1/2010 12:00:00 AM.

	= STARTOFCURRENTMONTH().Day
	The day for the start of current month.

	= STARTOFCURRENTMONTH().AddDays(-1)
	The end date of the previous month.

	= STARTOFCURRENTMONTH().AddDays(-1).Month
	The value of previous month.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526377][bookmark: _Ref259630856][bookmark: _Toc414873097]STARTOFCURRENTQUARTER
Returns the start date of the current quarter treating the system date as current date. The time returned is 12:00:00 AM.
Syntax
= STARTOFCURRENTQUARTER()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
[bookmark: _Ref259630857]Examples
	Example
	Returns

	= STARTOFCURRENTQUARTER()
	As SYSTEM date is 1/28/2010, 1/1/2010 12:00:00 AM

	= STARTOFCURRENTQUARTER().Month
	The month for the start of current quarter.

	= STARTOFCURRENTQUARTER().AddMonths(3)
	The start date of next quarter.

	= STARTOFCURRENTQUARTER().AddMonths(3).Month
	The month for the start of next quarter.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526381][bookmark: _Ref259630863][bookmark: _Toc414873098]STARTOFCURRENTYEAR
Returns the start date of the current year treating the system date as current date. The time returned is 12:00:00 AM.
Syntax
= STARTOFCURRENTYEAR()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFCURRENTYEAR()
	As SYSTEM date is 1/28/2010, 1/1/2010 12:00:00 AM

	= STARTOFCURRENTYEAR().Year
	The current year.

	= STARTOFCURRENTYEAR().AddDays(-1)
	The end date of previous year.

	= STARTOFCURRENTYEAR().AddDays(-1).year
	The previous year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526373][bookmark: _Ref259630848][bookmark: _Toc414873099]STARTOFLASTMONTH
Returns the start date of the previous month treating the system date as current date. The time returned is 12:00:00 AM.
Syntax
= STARTOFLASTMONTH()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFLASTMONTH()
	As SYSTEM date is 1/28/2010, 12/1/2009 12:00:00 AM.

	= STARTOFLASTMONTH().Month
	The last month.

	= STARTOFLASTMONTH().AddMonths(-1)
	The start date 2 months before the current month.

	= STARTOFLASTMONTH().AddMonths(-1). Month
	The month 2 months before the current month.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526379][bookmark: _Ref259630859][bookmark: _Toc414873100]STARTOFLASTQUARTER
Returns the start date of the previous quarter treating the system date as current date. The time returned is 12:00:00 AM.
Syntax
= STARTOFLASTQUARTER()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFLASTQUARTER()
	As SYSTEM date is 1/28/2010, 10/1/2009 12:00:00 AM

	= STARTOFLASTQUARTER().Month
	The month for the start of previous quarter.

	= STARTOFLASTQUARTER().AddMonths(-3)
	The start date of the quarter before previous quarter.

	= STARTOFLASTQUARTER().AddMonths(-3). Month
	The month for the start of the quarter before previous quarter.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Ref260670337][bookmark: _Toc414873101]STARTOFLASTWEEK
Returns the start date of the previous week. The time returned is 12:00 AM.
Syntax
= STARTOFLASTWEEK()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFLASTWEEK()
	If SYSTEM date is 1/28/2010: 1/17/2010 12:00:00 AM.

	= STARTOFLASTWEEK().Day
	The day for start of the previous week.

	= STARTOFLASTWEEK().AddDays(-7)
	The date and time for the start of the week before previous week.

	= STARTOFLASTWEEK().AddDays(-7).Day
	The day for the start of the week before previous week.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526385][bookmark: _Ref259630873][bookmark: _Toc414873102]STARTOFLASTYEAR
Returns the start date of the previous year treating the system date as current date. The time returned is 12:00:00 AM.
Syntax
= STARTOFLASTYEAR()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFLASTYEAR()
	As SYSTEM date is 1/28/2010, 1/1/2009 12:00:00 AM

	= STARTOFLASTYEAR().Year
	The previous year.

	= STARTOFLASTYEAR().AddMonths(2)
	The start date of end of 1st quarter for last year.

	= STARTOFLASTYEAR().AddYears(1).Year
	The current year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526369][bookmark: _Ref259630839][bookmark: _Toc414873103]STARTOFMONTH
Returns the start date of the month for the date passed to the function. The time returned is 12:00:00 AM.
Syntax
= STARTOFMONTH(valueDate)
Parameters
	valueDate
	A date time value whose start date of the month is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFMONTH(“2/2/2010”)
	2/1/2010 12:00:00 AM

	= STARTOFMONTH(“2/2/2010”).DAY
	The day extracted from start of the month.

	= STARTOFMONTH(“2/2/2010”).AddDays(-1)
	The end date of the month previous to the date passed to the function.

	= STARTOFMONTH(“2/2/2010”).AddDays(-1).Month
	The value of the month previous to the date passed to the function.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526375][bookmark: _Ref259630851][bookmark: _Toc414873104]STARTOFQUARTER
Returns the start date of the quarter for the date passed to the function. The time returned is 12:00:00 AM.
Syntax
= STARTOFQUARTER(valueDate)
Parameters
	valueDate
	A date time value whose start date of the quarter is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFQUARTER("02/19/2009")
	1/1/2009 12:00:00 AM

	= STARTOFQUARTER("02/19/2009").MONTH
	The month for the start of quarter for the given date.

	= STARTOFQUARTER("02/19/2009").ADDMONTHS(3)
	The start date of quarter next to the given date.

	= STARTOFQUARTER("02/19/2009").AddMonths(3).Month
	The month for the start of quarter next to the given date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526365][bookmark: _Ref259630830][bookmark: _Toc414873105]STARTOFWEEK
Returns the start date of the week for the date passed to the function. If the date passed to the function is in wrong format then returns the system’s date. The time returned is 12:00 AM.
Syntax
= STARTOFWEEK(valueDate)
Parameters
	valueDate
	A date time value whose start date of the week is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFWEEK(“02/19/2009 14:30:30.3”)
	2/15/2009 12:00:00 AM

	= STARTOFWEEK("2009-02-19 14:30:30.3")
	2/15/2009 12:00:00 AM

	= STARTOFWEEK(“abcd”)
	The start of the week for the system’s date.

	= STARTOFWEEK(ShippedDate)
	The start of the week for the value of ShippedDate. If any entries are NULL then returns the start of the week for the system’s date.

	= STARTOFWEEK(“02/19/2009”).Day
	The day for start of the week for the given date.

	= STARTOFWEEK(“02/19/2009”).AddDays(-7)
	The date and time for the start of the last week for the given date.

	= STARTOFWEEK(“02/19/2009”).AddDays(-7).Day
	The day for the start of the last week for the given date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526383][bookmark: _Ref259630866][bookmark: _Toc414873106]STARTOFYEAR
Returns the start date of the year passed to the function. The time returned is 12:00:00 AM.
Syntax
= STARTOFYEAR(valueDate)
Parameters
	valueDate
	A date time value whose start date of the week is to be determined. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3", "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= STARTOFYEAR(“2/2/2010”)
	1/1/2010 12:00:00 AM

	= STARTOFYEAR(“2/2/2010”).Year
	The year extracted from start of the year.

	= STARTOFYEAR(“2/2/2010”).AddDays(-1)
	The end date of the year previous to the given date.

	= STARTOFYEAR(“2/2/2010”).AddDays(-1).YEAR
	The year previous to the given date.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526361][bookmark: _Ref259630820][bookmark: _Toc414873107]TIME1
Returns a DateTime value with the specified hour, minute, and second. If the date is not entered, the date by default is set to system date.
Syntax
= TIME1(hour, minute, second)
Parameters
	Hour
	A value representing the hours. The value can be specified as an integer (e.g., 21), as a string (“21”), or as the value of a variable (e.g, UnitPrice).

	Minute
	A value representing the minutes. The value can be specified as an integer (e.g., 21), as a string (“21”), or as the value of a variable (e.g, UnitPrice).

	Second
	A value representing the minutes. The value can be specified as an integer (e.g., 21), as a string (“21”), or as the value of a variable (e.g, UnitPrice).

Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used.
Examples
	Example
	Returns

	= TIME1(“21”, “30”, “30”)
	1/28/2010 9:30:30 PM

	= TIME1(21, 30, 30)
	1/28/2010 9:30:30 PM

	= TIME1(“x”, “y” “z”)
	Displays message “TIME1(x, y, z): Input string was not in a correct format.”

	= TIME1(ShippedDate.Hour, ShippedDate.Minute, ShippedDate.Second)
	The DateTime with time extracted from the value of ShippedDate and date from system date. If any entries are NULL then returns the DateTime extracted from the system time.

	= TIME1(“27”, “30”, “30”).Hour
	The hours as 3.

	= TIME1(“0”, “0”, “0”).AddHours(5)
	The system date and time as 5 AM.

	= TIME1(“27”, “0”, “0”).AddHours(5).Hour
	The hour, 5 hours after the specified time.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526363][bookmark: _Ref259630824][bookmark: _Toc414873108]TODAY
Returns the SYSTEM date. The time returned is 12:00:00 AM.
Syntax
= TODAY()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= TODAY()
	The present system date with time as 12:00:00 AM. In this case 1/28/2010 12:00:00 AM

	= TODAY().Day
	The current day.

	= TODAY().AddYears(-25)
	The date twenty five years ago and time as 12:00 AM.

	= TODAY().AddYears(-25).Year
	The year twenty five years ago.

	= TODAY().subtract(STARTOFCURRENTYEAR()).Days + 1
	Number of days since the beginning of the year.

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526359][bookmark: _Ref259630815][bookmark: _Toc414873109]YEAR
Returns the year from the DateTime value passed to the function. If the date is in wrong format then the function returns the year extracted from system time.
Syntax
= YEAR(value)
Parameters
	value
	A date time value from which the year has to be extracted. The value can contain DateTime as a string (e.g. “02/19/2009 14:30:30.3”, "2009-02-19 14:30:30.3",
 "19 Feb 2009 2:30:30.3 PM ", "Thu, 19 Feb 2009”) or as a DateTime object.

Return Type
Integer
In the case of an error, the function displays an error message: “YEAR(value): Error message”
Examples
	Example
	Returns

	= YEAR(“02/19/2009 14:30:30.3”)
	2009

	= YEAR("2009-02-19 14:30:30.3")
	2009

	= YEAR(“abcd”)
	The year extracted from system date

	= YEAR(ShippedDate)
	The year extracted from the value of ShippedDate. If any entries are NULL then returns the year extracted from the system time.

[bookmark: _Toc259526364][bookmark: _Ref259630828][bookmark: _Toc414873110]YESTERDAY
Returns yesterday’s DateTime value treating the System Date value as today’s date and time as 12:00AM.
Syntax
= YESTERDAY()
Parameters
None
Return Type
DateTime. The function returns a Microsoft .NET DateTime object. Any properties or member functions of the DateTime object can also be accessed or used in formulas.
Examples
	Example
	Returns

	= YESTERDAY()
	In this case 1/27/2010 12:00:00 AM as the system date is 1/28/2010

	= YESTERDAY().Day
	Yesterday’s day.

	= YESTERDAY().AddDays(-7)
	The date, a week before yesterday

	= YESTERDAY().AddDays(-7).Day
	The day, a week before yesterday

Reference
http://msdn.microsoft.com/en-us/library/system.datetime_members(VS.71).aspx

[bookmark: _Toc259526387][bookmark: _Toc414873111]Formatting Functions
Related topics
CAST
FORMAT

[bookmark: _Ref262137638][bookmark: _Toc414873112]CAST
Use the CAST function to cast a value to an integer, string or decimal. While casting works for most cases, there are times when there are additional formatting characters in the value. In this case, casting is not sufficient, but instead the value must be parsed to remove the symbol and separator characters. In these cases, use the PARSEDECIMAL, PARSEINTEGER and PARSEDATE functions.
Syntax
= CAST(value, type)
Parameters
	value
	An object which is to be cast to a value. The value should be specified as an object

	type
	The type to which the object is to be casted. It can take any .NET basic type such int, decimal, string, etc.

Return Type
Depends on the value supplied to the type parameter.
Examples
	Example
	Returns

	= CAST(-1.5, int)
	-1

	= CAST(“test”, string)
	“test”

	= CAST("abcd", int)
	ERROR: CastElement: Cannot convert type 'String' to 'Int32'

[bookmark: _Toc259526388][bookmark: _Ref259635276][bookmark: _Toc414873113]FORMAT
Returns the formatted value of the input passed to the function.
Syntax
= FORMAT(value, formatString)
Parameters
	value
	A value which has to be formatted. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string with an optional currency symbol and separators (“1,234.56”, “$1,234.56”), as the value of a variable (e.g, UnitPrice), or as a Date.

	formatString
	A string which specifies how to format the value. The string can be specified as a date formatter (e.g., “d”, “D”, “f”, “F”), numeric format string (e.g., “c”, “d”, “e”, “f”, “g”), as a string with an optional currency symbol and separators (“1,234.56”, “$1,234.56”), as the value of a variable (e.g, UnitPrice), or as a Date.

Return Type
Object
Examples
	Example
	Returns

	= FORMAT(“02/19/2009 14:30:30.3”, “d”)
	2/19/2009

	= FORMAT(ShippedDate, “d”)
	The formatted value of ShippedDate in the Month Day format

	= FORMAT(1234, “c”)
	$1,234.00

	= FORMAT(1234, “E”)
	1.234000E+003

[bookmark: _Toc414873114][bookmark: _Toc259526393]Geocoding Functions
Geocoding or Geo-location functions allow converting address to latitude and longitude and vice versa, adding static or interactive map to the page, retrieving records in proximity to a certain location and sorting them by distance. Note, that although there are functions converting address to latitude and longitude it is required to have already filled fields for latitude and longitude in the database table to sort or retrieve records based on proximity to a certain location.
Latitude and Longitude should be expressed in degrees (i.e. 37.39, -121.93). Application internally converts degrees to radians when needed.
Configuring Geocoding Functionality
Before using geocoding functions, set “Retrieve user location” property to True in the Application Generation Options to use Geocoding functions in the Designer.
Restrictions: Iron Speed Designer generated Geocoding functions require a Google API key. Please refer the section below to generate API key: https://developers.google.com/maps/documentation/javascript/tutorial
Once Google API key is received, it can be added in web.config section.
<add key="GoogleKey" value=""/>
<add key="GoogleClientID" value=""/>
<add key="GoogleSignature" value=""/>
Although Geocoding functions work without specifying API key, it is recommended in the Google documentation to use the API key. Also, please read the usage limits on the above website. There are usage limits and restrictions for Geocoding requests and Map requests too. Exceeding usage limits may stop the formulas to work. In order to use the Geocoding functions for the Business purpose, Google Maps API license can be purchased. This information has been specified in detail in the following URL: https://developers.google.com/maps/documentation/geocoding/
[bookmark: _Ref355881252]Configuring Default Location
Default location from web.config is used if user does not share his current browser location. Use the following 2 web.config elements to set the default latitude and default longitude.
<add key="DefaultLatitude" value="" />
<add key="DefaultLongitude" value="" />
Related Topics
BOUNDINGBOXEDGE
CLEARBROWSERLOCATION
DECIMALTODEGREES
DECIMALTOMINUTES
DECIMALTOSECONDS
DEGREESMINSECTODECIMAL
DISTANCEBETWEEN
GETBROWSERLOCATION
GETDISTANCEUNIT
GOOGLEDIRECTIONS
GOOGLEINTERACTIVEMAP
GOOGLEMAP
GOOGLEMAPWITHDIRECTIONS
GOOGLEINTERACTIVEMAPURL
GOOGLEMAPURL
GOOGLEPOPUPMAPURL
ISWITHINRADIUS
LOCATIONTOADDRESS
LOCATIONTOLATITUDE
LOCATIONTOLONGITUDE
LOCATIONTOOTHER
SETDEFAULTLOCATION
SETDISTANCEUNIT
[bookmark: _Ref413862664][bookmark: _Toc414873115]BOUNDINGBOXEDGE
Returns the decimal latitude or longitude of the edges of a 2-dimensional square that circumscribes a circle of a given radius from a given origin (altitude, speed, and bearing are ignored). This is useful for quickly approximating whether a group of points are within a distance of an origin. If direction parameter is set to south or north then a decimal latitude is returned. If the direction parameter is set to east or west then a decimal longitude is returned.

Syntax
= BOUNDINGBOXEDGE (location, radius, direction)
Parameters
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

	radius
	Decimal maximum distance

	direction
	String direction (north, south, east, west) of the edge of the bounding box to be returned.

Return Type
Decimal
Returns the decimal latitude or longitude
Examples
	Example
	Returns

	BOUNDINGBOXEDGE(GetBrowserLocation(), 5, ”north”)
	Returns a decimal value.

[bookmark: _Ref413862666][bookmark: _Toc414873116]CLEARBROWSERLOCATION
Clears the browser location from session memory. Note that in order to prevent infinite loops, it has an effect only when called with the HTTP GET method.
 Syntax
= CLEARBROWSERLOCATION()
Parameters
None
Return Type
None
Examples
	Example
	Returns

	= CLEARBROWSERLOCATION()
	None

[bookmark: _Ref413862680][bookmark: _Toc414873117]DECIMALTODEGREES
Simply converts decimal ordinate to degrees from degrees-minutes-seconds format. Works for both longitude and latitude.
.
Syntax
= DECIMALTODEGREES (ordinate)
Parameters:
	ordinate
	Decimal value, either a latitude or longitude.

Return Type
Decimal
Returns degree value.

Examples
	Example
	Returns

	= DECIMALTODEGREES(37.39)
	Returns degrees.

[bookmark: _Ref413862691][bookmark: _Toc414873118]DECIMALTOMINUTES
Simply converts decimal ordinate to minutes from degrees-minutes-seconds format. Works for both longitude and latitude.
.
Syntax
= DECIMALTOMINUTES (ordinate)
Parameters:
	ordinate
	Decimal value, either a latitude or longitude.

Return Type
Decimal
Returns minutes value.

Examples
	Example
	Returns

	= DECIMALTOMINUTES(37.39)
	Returns minutes value.

[bookmark: _Ref413862692][bookmark: _Toc414873119]DECIMALTOSECONDS
Simply converts decimal ordinate to seconds from degrees-minutes-seconds format. Works for both longitude and latitude.
.
Syntax
= DECIMALTOSECONDS (ordinate)
Parameters:
	ordinate
	Decimal value, either a latitude or longitude.

Return Type
Decimal
Returns seconds value.

Examples
	Example
	Returns

	= DECIMALTOSECONDS(37.39)
	Returns seconds value.

[bookmark: _Ref413862694][bookmark: _Toc414873120]DEGREESMINSECTODECIMAL
Simply converts from degrees-minutes-seconds format into decimal degrees format. Returns a decimal value.
Syntax
= DEGREESMINSECTODECIMAL (degrees, minutes, seconds)
Parameters:
	degrees
	Decimal value (should only be an integer)

	minutes
	Decimal value (should only be an integer)

	seconds
	Decimal value

Return Type
Decimal
Returns decimal degress value.

Examples
	Example
	Returns

	= DEGREESMINSECTODECIMAL (36, 23, 24)
	Returns a decimal value.

[bookmark: _Ref413862698][bookmark: _Toc414873121]DISTANCEBETWEEN
Returns the decimal distance between two geographic points.
Syntax
= DISTANCEBETWEEN (startLocation, endLocation)
Parameters
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

Return Type
Decimal
Returns the decimal distance value
Examples
	Example
	Returns

	DISTANCEBETWEEN(GetBrowserLocation(), ”2870 Zanker Rd San Jose”)
	Returns the decimal distance.

[bookmark: _Ref413862700][bookmark: _Toc414873122]GETBROWSERLOCATION
Returns an XML string that is of the user’s location. Also refer to CONFIGURING DEFAULT LOCATION section.
Syntax
= GETBROWSERLOCATION()
Parameters
None
Return Type
String
Returns an XML string that is of the user’s location.
Examples
	Example
	Returns

	= GETBROWSERLOCATION()
	<location>
<latitude>-100.432</latitude>
<longitude>-100.432</longitude>
<altitude>42.5343</altitude>
<speed>42.45</speed>
<heading>127.543</heading>
<accuracy>0.00312</accuracy>
<altitudeAccuracy>0.15</altitudeAccuracy>
<location>

[bookmark: _Ref413862800][bookmark: _Toc414873123][bookmark: _Ref413862704]GETDISTANCEUNIT
Returns a string representation of the default distance unit: nautical miles, miles, yards, feet, kilometers, or meters). The value initially comes from web.config but is stored in session. Note that for the hidden field with the geolocation in web pages, the unit used is always meters regardless of the distance unit.

Syntax
= GETDISTANCEUNIT()
Return Type
String
Returns a string representation of the default distance unit.

Examples
	Example
	Returns

	= GETDISTANCEUNIT()
	Returns a string representation of the default distance unit.

[bookmark: _Toc414873124]GOOGLEDIRECTIONS
Returns a string of HTML for adding a hyperlink that gets a Google directions popup. Clicking on the map image will popup a window with Google maps.
Syntax
= GOOGLEDIRECTIONS (startLocation, endLocation)

Parameters:
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

Return Type
String
Returns a string of HTML for adding a hyperlink that gets a Google directions popup.

Examples
	Example
	Returns

	= GOOGLEDIRECTIONS ("37.39;-121.26", "37.39;-121.98")
	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

	= GOOGLEDIRECTIONS (GetBrowserLocation(), "37.39;-121.98")

	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

	= GOOGLEDIRECTIONS (GetBrowserLocation(), "2870 Zanker Rd San Jose, CA")
	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

	
	

Syntax
= GOOGLEDIRECTIONS (startLocation, endLocation, popupWidth, popupHeight, googleDirectionsParameters)

Parameters:
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	popupWidth
	Width of a popup window

	popupHeight
	Height of a popup window

	googleDirectionsParameters
	These are additional direction parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns a string of HTML for adding a hyperlink that gets a Google directions popup.
Examples
	Example
	Returns

	= GOOGLEDIRECTIONS ("2870 Zanker Rd San Jose, CA", "Cupertino, CA", 500, 500, "zoom=5")
	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

[bookmark: _Ref413862709][bookmark: _Toc414873125]GOOGLEINTERACTIVEMAP
Returns a string of HTML for adding a generated interactive map to a web page. The interactive map can be zoomed, etc., but clicking on it does not popup anything. Note that the string returned will be an iframe, which is too heavyweight to be included in a repeater
Syntax
= GOOGLEINTERACTIVEMAP (location)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

Return Type
String
Returns a string of HTML for adding a generated interactive map to a web page.

Examples
	Example
	Returns

	= GOOGLEINTERACTIVEMAP ("37.39;-121.26")
	Returns a string of HTML for adding a generated interactive map to a web page.

	= GOOGLEINTERACTIVEMAP (GetBrowserLocation())

	Returns a string of HTML for adding a generated interactive map to a web page.

	= GOOGLEINTERACTIVEMAP ("2870 Zanker Rd San Jose, CA")

	Returns a string of HTML for adding a generated interactive map to a web page.

Syntax
= GOOGLEINTERACTIVEMAP (location, width, height, googleMapParameters)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns a string of HTML for adding a generated interactive map to a web page.
Examples
	Example
	Returns

	= GOOGLEINTERACTIVEMAP("2870 zanker rd san jose, CA", 500, 500, "maptype=roadmap")
	Returns a string of HTML for adding a generated interactive map to a web page

[bookmark: _Ref413862713][bookmark: _Toc414873126]GOOGLEMAP
Returns a string of HTML for adding a generated map to a web page
Syntax
= GOOGLEMAP (location, width, height, googleMapParameters, googlePopupMapParameters)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

	googlePopupMapParameters
	These are additional direction parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns a string of HTML for adding a generated map to a web page.

Examples
	Example
	Returns

	= GOOGLEMAP (“37.39;-121.26”, 300, 200, “”, “”)
	Returns a string of HTML for adding a generated interactive map to a web page.

Syntax
= GOOGLEMAP (latitude, longitude)
Parameters:
	latitude
	Latitude value as decimal

	longitude
	Longitude value as decimal

Return Type
String
Returns a string of HTML for adding a generated map to a web page.

Examples
	Example
	Returns

	= GOOGLEMAP (37.39,-121.26)
	Returns a string of HTML for adding a generated interactive map to a web page.

Syntax
= GOOGLEMAP (location)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

Return Type
String
Returns a string of HTML for adding a generated map to a web page.Examples
	Example
	Returns

	= GOOGLEMAP ("37.39;-121.26")
	Returns a string of HTML for adding a generated interactive map to a web page.

	= GOOGLEMAP (GetBrowserLocation())

	Returns a string of HTML for adding a generated interactive map to a web page.

	= GOOGLEMAP ("2870 Zanker Rd San Jose, CA")

	Returns a string of HTML for adding a generated interactive map to a web page.

[bookmark: _Ref413862718][bookmark: _Toc414873127]GOOGLEMAPWITHDIRECTIONS
Returns a string of HTML for adding a hyperlink that gets a Google directions popup. Inside the hyperlink is an image that is a static map of the endLocation. Note that startLocation and endLocation can both be lat/long, both address, or one lat/long and the other address. No geocoding is performed.
Syntax
= GOOGLEMAPWITHDIRECTIONS (startLocation, endLocation)
Parameters:
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

Return Type
String
Returns a string of HTML for adding a hyperlink that gets a Google directions popup.
Examples
	Example
	Returns

	= GOOGLEMAPWITHDIRECTIONS("37.39;-121.26", "37.39;-121.98")
	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

Syntax
= GOOGLEMAPWITHDIRECTIONS (startLocation, endLocation, width, height, popupWidth, popupHeight, googleMapParameters, googleDirectionsParameters)
Parameters:
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	popupWidth
	Width of a popup window

	popupHeight
	Height of a popup window

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

	googleDirectionsParameters
	These are additional direction parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns a string of HTML for adding a hyperlink that gets a Google directions popup.
Examples
	Example
	Returns

	= GOOGLEMAPWITHDIRECTIONS("2870 zanker rd san jose, CA", "Cupertino, CA", 500, 500, 200, 200, "maptype=roadmap", "zoom=13")
	Returns a string of HTML for adding a hyperlink that gets a Google directions popup

[bookmark: _Ref413862722][bookmark: _Toc414873128]GOOGLEINTERACTIVEMAPURL
Returns URL for adding a generated interactive map to a web page. The interactive map can be zoomed, etc., but clicking on it does not popup anything.
Syntax
= GOOGLEINTERACTIVEMAPURL (location, width, height, googleMapParameters)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns URL for adding a generated interactive map to a web page.
Examples
	Example
	Returns

	= GOOGLEINTERACTIVEMAPURL("2870 zanker rd san jose, CA", 500, 500, "maptype=roadmap")
	Returns URL for adding a generated interactive map to a web page.

[bookmark: _Ref413862725][bookmark: _Toc414873129]GOOGLEMAPURL
Returns URL for adding a generated interactive map to a web page. The interactive map can be zoomed, etc., but clicking on it does not popup anything.
Syntax
= GOOGLEMAPURL (location, width, height, googleMapParameters)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns URL for adding a generated interactive map to a web page.

Examples
	Example
	Returns

	= GOOGLEMAPURL("2870 zanker rd san jose, CA", 500, 500, "maptype=roadmap")
	Returns a URL for adding a generated map to a web page

[bookmark: _Ref413862729][bookmark: _Toc414873130]GOOGLEPOPUPMAPURL
Returns a URL for adding popup map to a web page
Syntax
= GOOGLEPOPUPMAPURL (location, width, height, popupWidth, popupHeight, googleMapParameters, googlePopupMapParameters)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

	width
	Integer width of map image or iframe. -1 will use the default value

	height
	Integer height of map image or iframe. -1 will use the default value

	popupWidth
	Width of a popup window

	popupHeight
	Height of a popup window

	googleMapParameters
	These are additional map parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

	googlePopupMapParameters
	These are additional direction parameters. Values can be separated using ampersand character. Please check the following url for additional parameters.
https://developers.google.com/maps/documentation/staticmaps/

Return Type
String
Returns a URL for adding popup map to a web page.

Examples
	Example
	Returns

	= GOOGLEPOPUPMAPURL ("2870 zanker rd san jose, CA", 500, 500, 200, 200, "maptype=roadmap", "zoom=13")
	Returns a URL for adding popup map to a web page

[bookmark: _Ref413862784][bookmark: _Toc414873131]ISWITHINRADIUS
Returns a boolean based on whether two geographic points are within a given radius.
Syntax
= ISWITHINRADIUS (startLocation, endLocation, radius)
Parameters
	startLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

	endLocation
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

	radius
	Decimal maximum distance

Return Type
Boolean
Returns a Boolean value
Examples
	Example
	Returns

	ISWITHINRADIUS(GetBrowserLocation(), ”2870 Zanker Rd San Jose”, 5)
	Returns a Boolean value.

[bookmark: _Ref413862786][bookmark: _Toc414873132]LOCATIONTOADDRESS
Takes a location string (either XML, lat;long, or address) and returns the address component as a string. Reverse geocodes as necessary.
Syntax
= LOCATIONTOADDRESS (location)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

Return Type
String
Returns the address component as a string.

Examples
	Example
	Returns

	= LOCATIONTOADDRESS(GetBrowserLocation())
	Returns address component as a string.

	= LOCATIONTOADDRESS("2870 Zaker Rd, San Jose CA")

	Returns address component as a string.

	= LOCATIONTOADDRESS("37.23;-121.55")

	Returns address component as a string.

	
	

[bookmark: _Ref413862788][bookmark: _Toc414873133]LOCATIONTOLATITUDE
Takes a location string (either XML, lat;long, or address) and returns the latitude component as a string. Reverse geocodes as necessary.
Syntax
= LOCATIONTOLATITUDE (location)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon, or a street address.

Return Type
String
Returns the latitude component as a string.

Examples
	Example
	Returns

	= LOCATIONTOLATITUDE(GetBrowserLocation())
	Returns latitude component as a string.

	= LOCATIONTOLATITUDE("2870 Zaker Rd, San Jose CA")

	Returns latitude component as a string.

[bookmark: _Ref413862792][bookmark: _Toc414873134]LOCATIONTOLONGITUDE
Takes a location string (either XML, lat;long, or address) and returns the longitude component as a string. Reverse geocodes as necessary.
Syntax
= LOCATIONTOLONGITUDE (location)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a longitude and longitude separated by a semicolon, or a street address.

Return Type
String
Returns the longitude component as a string.

Examples
	Example
	Returns

	= LOCATIONTOLONGITUDE(GetBrowserLocation())
	Returns longitude component as a string.

	= LOCATIONTOLONGITUDE("2870 Zaker Rd, San Jose CA")

	Returns longitude component as a string.

[bookmark: _Ref413862794][bookmark: _Toc414873135]LOCATIONTOOTHER
Takes a location string (either XML, lat;long, or address) and returns the component (latitude, longitude, etc.) as a string. Geocodes or reverse geocodes as necessary.
Syntax
= LOCATIONTOOTHER (location, componentToExtract)
Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a longitude and longitude separated by a semicolon, or a street address.

	componentToExtract
	String value of the part of the point to extract: address, latitude, longitude, altitude, speed, bearing, accuracy, altitudeAccuracy, error.

Return Type
String
Returns the the component (latitude, longitude, etc.) as a string.

Examples
	Example
	Returns

	= LOCATIONTOOTHER(GetBrowserLocation(), ”address”)
	Returns address component as a string.

	= LOCATIONTOOTHER("2870 Zaker Rd, San Jose CA", ”altitude”)

	Returns altitude component as a string.

[bookmark: _Ref413862802][bookmark: _Toc414873136]SETDEFAULTLOCATION
Sets the default location in session.

Syntax
= SETDEFAULTLOCATION (LOCATION)

Parameters:
	location
	String containing the location in any of 3 formats: an XML location string, a latitude and longitude separated by a semicolon or a street address.

Return Type
None
Examples
	Example
	Returns

	= SETDEFAULTLOCATION(“2870 Zanker Rd San Jose, CA”)
	None

[bookmark: _Ref413862807][bookmark: _Toc414873137]SETDISTANCEUNIT
Sets the default distance unit in session memory.
Syntax
= SETDISTANCEUNIT (unit)
Parameters
	unit
	String containing the new default distance unit (nautical miles, miles, yards, feet, kilometers, or meters).

Return Type
None

Examples
	Example
	Returns

	= SETDISTANCEUNIT()
	Sets the default distance unit in session memory.

[bookmark: _Toc414873138]Information Functions
Related topics
ISBLANK
ISEVEN
ISLOGICAL
ISNULL
ISNUMBER
ISODD
ISTEXT

[bookmark: _Toc259526399][bookmark: _Ref259635353][bookmark: _Toc414873139]ISBLANK
Returns the boolean value true if the value passed to the function is blank else returns false.
Syntax
= ISBLANK(value)
Parameters
	Value
	A value which has to be checked. The value can be specified as a decimal value (e.g., 37.48), as a string (“ “), as an expression (e.g., 1+1=2), or as the value of a variable (e.g, ShippedDate).

Return Type
Boolean
Examples
	Example
	Returns

	= ISBLANK(30)
	False

	= ISBLANK(“ “)
	True

	= ISBLANK(1+1=2)
	False

	= ISBLANK(ShippedDate)
	True if the value of ShippedDate is blank or null else returns false

[bookmark: _Toc259526394][bookmark: _Ref259635341][bookmark: _Toc414873140]ISEVEN
Returns the boolean value true if the value passed to the function is even else returns false.
Syntax
= ISEVEN(value)
Parameters
	value
	A value which has to be checked. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice), or as a Date

Return Type
Boolean
Examples
	Example
	Returns

	= ISEVEN(37.48)
	False

	= ISEVEN(“$1,234”)
	True

	= ISEVEN (“$-1,234”)
	True

	= ISEVEN (UnitPrice)
	True if the value of UnitPrice is even else returns False

	= ISEVEN(“abcd”)
	Displays message “ISEVEN(abcd): Input string was not in a correct format.”

[bookmark: _Toc259526397][bookmark: _Ref259635349][bookmark: _Toc414873141]ISLOGICAL
Returns the boolean value true if the value passed to the function is a logical value else returns False.
Syntax
= ISLOGICAL(value)
Parameters
	value
	A value which has to be checked. The value can be specified as a decimal value (e.g., 37.48), as a string (“True”), as a Boolean (e.g., True), as an expression (e.g., 1+1=2), or as the value of a variable (e.g, UnitPrice).

Return Type
Boolean
Examples
	Example
	Returns

	= ISLOGICAL(True)
	True

	= ISLOGICAL(“True”)
	True

	= ISLOGICAL(1+1=2)
	True

	= ISLOGICAL(UnitPrice)
	True if the value of UnitPrice is a logical value else returns False.

[bookmark: _Toc259526398][bookmark: _Ref259635352][bookmark: _Toc414873142]ISNULL
[bookmark: _GoBack]Returns the boolean value true if the value passed to the function is a NULL else returns false.
Should not be used to check the value of the database field because even when value of the field in database is NULL it might not be NULL in the record’s DataSource. Namely all integer values will be set to 0 in DataSource when they are NULL in the database, string values are set to an empty string when they are NULL in database and so on.
To check if the value is NULL in the database use different approach: instead of
If(ISNULL(QuantityPerUnit), “true”, “false”)
 in Products table resord use QuantityPerUnitSpecified property in the record control:
If(ProductsRecordControl.DataSource.QuantityPerUnitSpecified, “true”, “false”)
Or
If(ProductsTableControlRow.DataSource.QuantityPerUnitSpecified, “true”, “false”)
Syntax
= ISNULL(value)
Parameters
	Value
	A value which has to be checked. The value can be specified as a decimal value (e.g., 37.48), as a string (“True”), as a Boolean (e.g., True), as an expression (e.g., 1+1=2).

Return Type
Boolean
Examples
	Example
	Returns

	= ISNULL(“a”)
	False

	= ISNULL(1234)
	False

	= ISNULL(1+1=2)
	False

[bookmark: _Toc259526396][bookmark: _Ref259635348][bookmark: _Toc414873143]ISNUMBER
Returns the boolean value true if the value passed to the function is a number else returns false.
Syntax
= ISNUMBER(value)
Parameters
	value
	A value which has to be checked. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Boolean
Examples
	Example
	Returns

	= ISNUMBER(37.48)
	True

	= ISNUMBER(“abcd”)
	False

	= ISNUMBER(“$-1,234”)
	True

	= ISNUMBER(UnitPrice)
	True if the value of UnitPrice is a number else returns False

[bookmark: _Toc259526395][bookmark: _Ref259635344]
[bookmark: _Toc414873144]ISODD
Returns the boolean value true if the value passed to the function is odd else returns false.
Syntax
= ISODD(value)
Parameters
	value
	A value which has to be checked. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice), or as a Date

Return Type
Boolean
Examples
	Example
	Returns

	= ISODD(“$1,2345”)
	True

	= ISODD(“$-1,234”)
	False

	= ISODD(UnitPrice)
	True if the value of UnitPrice is odd else returns False

	= ISODD(“abcd”)
	Displays message “ISODD(abcd): Input string was not in a correct format.”

[bookmark: _Toc259526400][bookmark: _Ref259635356][bookmark: _Toc414873145]ISTEXT
Returns the Boolean value “True” if the value passed to the function is text else returns “False”.
Syntax
= ISTEXT(value)
Parameters
	Value
	A value which has to be checked. The value can be specified as a decimal value (e.g., 37.48), as a string (“123”), as a Date (“1/28/2010”), or as the value of a variable (e.g, ShippedDate).

Return Type
Boolean
Examples
	Example
	Returns

	= ISTEXT(30)
	False

	= ISTEXT(“30”)
	True

	= ISTEXT(“abcd”)
	True

	= ISTEXT(ShippedDate)
	False if the value of date is not of type text else returns True.

[bookmark: _Toc414873146]Mathematical Functions
Related topics
ABS
CEILING
EXP
FLOOR
LOG
MAX
MIN
MODULUS
POWER
PI
QUOTIENT
ROUND
SQRT
TRUNC

[bookmark: _Toc259526323][bookmark: _Ref259630419][bookmark: _Toc414873147]ABS
Returns the absolute value of the number passed to the function.
Syntax
= ABS(value)
Parameters
	Value
	A number whose absolute value is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “ABS(value): Error message”
Examples
	Example
	Returns

	= ABS(-3)
	3

	= ABS(3)
	3

	= ABS(“$1,234”)
	1234

	= ABS(“$-1,234.57”)
	1234.57

	= ABS(UnitPrice)
	The absolute value of the UnitPrice variable

	= ABS(“abcd”)
	Displays message “ABS(abcd): Input string was not in a correct format.”

	= POWER(UnitPrice, ABS(-2))
	The square of the value of the UnitPrice variable

	= MAX(UnitPrice, ABS(“$-12”))
	The maximum of UnitPrice and the number 12.

[bookmark: _Toc259526324][bookmark: _Ref259630420][bookmark: _Toc414873148]CEILING
This function returns the nearest Integer value which is greater than or equal to the number passed.
Syntax
= CEILING(value)
Parameters
	Value
	A number whose ceiling value is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “CEILING(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= CEILING(-3.9)
	-3

	= CEILING(3.9)
	4

	= CEILING(“$1,234”)
	1234

	= CEILING(“$-1,234.57”)
	-1234

	= CEILING(UnitPrice)
	The ceiling of the value specified in the UnitPrice field

	= CEILING(“abcd”)
	Displays message “CEILING(abcd): Input string was not in a correct format.”

	= POWER(CEILING(UnitPrice), 2)
	The square of the ceiling value of UnitPrice.

	= MAX(CEILING(UnitPrice), 12)
	The maximum among the ceiling value of UnitPrice and the number 12.

[bookmark: _Toc259526325][bookmark: _Ref259630424][bookmark: _Toc414873149]EXP
Returns the exponential value, by calculating value of “e” raised to the power of the number passed to the function.
Syntax
= EXP(value)
Parameters
	Value
	A number whose exponential value is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “EXP(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= EXP(1)
	2.71828182845904

	= EXP(“$2”)
	7.38905609893065

	= EXP(“($2)”)
	0.135335283236613

	= EXP(UnitPrice)
	The exponential value of the UnitPrice.

	= EXP(“abcd”)
	Displays message “EXP(abcd): Input string was not in a correct format.”

	= POWER(EXP(UnitPrice), 2)
	The square of the exponential value of UnitPrice.

	= MAX(EXP(UnitPrice), 12)
	The maximum among the ceiling value of UnitPrice and the number 12.

[bookmark: _Toc259526326][bookmark: _Ref259630425][bookmark: _Toc414873150]FLOOR
The function instead of accepting 2 arguments as Excel, accepts only 1 argument and returns the nearest integer less than or equal to the number.
Syntax
= FLOOR(value)
Parameters
	Value
	A number whose floor value is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “FLOOR(value): Error message”
Examples
The function can be used in combination with other functions.
	Example
	Returns

	= FLOOR(1.789)
	1

	= FLOOR(-2.789)
	-3

	= FLOOR(“100.83%”)
	1

	= FLOOR(UnitPrice)
	The floor value of the UnitPrice

	= FLOOR(“abcd”)
	Displays message “FLOOR(abcd): Input string was not in a correct format.”

	= POWER(FLOOR(UnitPrice), 2)
	The square of the floor value of UnitPrice

	= MAX(FLOOR(UnitPrice), 12)
	The maximum among the floor value of UnitPrice and 12.

[bookmark: _Toc259526334][bookmark: _Ref259630445][bookmark: _Toc414873151]LOG
Returns the logarithmic value of the number passed to the function. If no base is mentioned then calculates logarithm to the base 10.
Syntax
= LOG(value)
= LOG(value, base)
Parameters
	value
	A number whose log value is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

	base (optional)
	A number which is the base of the logarithm. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “LOG(value): Error message” (or) “LOG(value, base): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= LOG(3)
	0.4771

	= LOG(-2)
	An error message.

	= LOG(“$1”, 2)
	0

	= LOG(10, 2)
	3.3219

	= LOG(UnitPrice, 3)
	The log value of the UnitPrice to the base 3

	= LOG(“abcd”, 5)
	Displays message “LOG(abcd, 5): Input string was not in a correct format.”

	= POWER(LOG(UnitPrice), 2)
	The square of the logarithm value of UnitPrice

	= MAX(LOG(UnitPrice,3), 12)
	The maximum among the logarithm value of UnitPrice to the base 3 and the number 12.

[bookmark: _Ref268013445][bookmark: _Toc414873152]MAX
Returns the maximum value among the values displayed in the rows of the table control. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.MAX("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function, e.g., Order_DetailsTableControl, ProductsTableControl, and CategoriesTableControl.
Please note that the maximum value returned in the value from the rows currently displayed. This is not the maximum value for all values currently in the database. So if only ten rows are displayed within the table control out of a million rows in the database, the MAX function will return the maximum of the ten displayed on the web page.
Syntax
= <TableControlName>.MAX(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose maximum value is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.MAX(“UnitPrice”)
	The maximum of the values displayed in the rows of the “UnitPrice” control.

	= Order_DetailsTableControl.MAX ("Quantity")
	The maximum of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.MAX ("Discount")
	The maximum of the values displayed in the rows of the “Discount” control.

[bookmark: _Ref268013446][bookmark: _Toc414873153]MIN
Returns the minimum value among the values displayed in the rows of the table control. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.MIN("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function, e.g., Order_DetailsTableControl, ProductsTableControl, and CategoriesTableControl.
Please note that the minimum value returned in the value from the rows currently displayed. This is not the minimum value for all values currently in the database. So if only ten rows are displayed within the table control out of a million rows in the database, the MIN function will return the minimum of the ten displayed on the web page.
Syntax
= <TableControlName>.MIN(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose minimum value is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.MIN(“UnitPrice”)
	The minimum of the values displayed in the rows of the “UnitPrice” control.

	= Order_DetailsTableControl. MIN("Quantity")
	The minimum of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.MIN("Discount")
	The minimum of the values displayed in the rows of the “Discount” control.

[bookmark: _Toc259526327][bookmark: _Ref259630429][bookmark: _Toc414873154]MODULUS
This function divides the two arguments passed and returns the remainder of the division. It differs from the Mod function of Excel, in the way the remainder is calculated.
Syntax
= MODULUS(dividend, divisor)
Parameters
	Dividend
	A number which is being divided. The number can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

	Divisor
	A number which divides. The number can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “MODULUS (dividend, divisor): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= MODULUS(-3.75, 2)
	-1.75

	= MODULUS(-3, -2)
	-1

	= MODULUS(“$3”, 2)
	1

	= MODULUS(ExtendedPrice, Quantity)
	The remainder value of the division

	= MODULUS(2, 0)
	Displays message “MODULUS(2, 0): Attempted to divide by zero.”

	= MODULUS(FLOOR(UnitPrice), 2)
	The remainder of division between the floor value of UnitPrice and the number 2.

	= ABS(MODULUS(UnitPrice, 2))
	The absolute value of the remainder got by division on floor value of UnitPrice by the number 2.

[bookmark: _Toc259526328][bookmark: _Ref259630430][bookmark: _Toc414873155]POWER
This function calculates the value of one number raised to the power of the other.
Syntax
= POWER(base, power)
Parameters
	Base
	A number which is the base. The number can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string wit, or as the value of a variable (e.g, UnitPrice).

	Power
	A number which is the power. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “POWER (dividend, divisor): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= POWER(3, 2)
	9.

	= POWER(3, ““)
	1.

	= POWER(“$3”, 2)
	9.

	= POWER(UnitPrice, 2)
	The square of the unit price.

	= POWER(“abcd”, “efg”)
	Displays message “POWER(abcd, efg): Input string was not in a correct format.”

	= MODULUS(POWER(UnitPrice, 2), 3)
	The remainder of division between the square of UnitPrice and the number 3.

	= MAX(MODULUS(UnitPrice, 2), 1)
	The maximum value among remainder of division between UnitPrice and the number 2, and the number 1.

[bookmark: _Toc259526329][bookmark: _Ref259630434][bookmark: _Toc414873156]PI
This function returns the value of PI which is 3.14159265358979
Syntax
= PI()
Parameters
None
Return Type
Decimal
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= PI()
	3.14159265358979

	= PI() * POWER(2, 2)
	The area of a circle of radius 2.

[bookmark: _Toc259526330][bookmark: _Ref259630435][bookmark: _Toc414873157]QUOTIENT
This function divides the two arguments passed and returns the quotient of the division. It differs from the Quotient function of Excel in the way it does division.
Syntax
= QUOTIENT(dividend, divisor)
Parameters
	Dividend
	A number which is being divided. The number can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

	Divisor
	A number which divides. The number can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “QUOTIENT (dividend, divisor): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= QUOTIENT(-3.75, -2)
	2

	= QUOTIENT(3.75, -2)
	-2

	= QUOTIENT(“$3.75”, 2)
	2

	= QUOTIENT(UnitPrice, Quantity)
	The quotient value of the division

	= QUOTIENT(“abcd”, “efg”)
	Displays message “QUOTIENT(abcd, efg): Input string was not in a correct format.”

	= QUOTIENT(POWER(UnitPrice, 2), 3)
	The quotient of division between the square of UnitPrice and the number 3.

	= MAX(QUOTIENT(UnitPrice, 2), 1)
	The maximum value among quotient of division between UnitPrice and the number 2, and the number 1.

[bookmark: _Toc259526331][bookmark: _Ref259630438][bookmark: _Toc414873158]ROUND
Rounds the number passed to the function to specified number of digits.
Syntax
= ROUND(value, numberOfDigits)
Parameters
	Value
	A number which is to be rounded. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

	numberOfDigits
	The number of places to which the number is to be rounded. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “ROUND(number, numberOfDigits): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= ROUND(-3.75, 1)
	-3.8

	= ROUND(3.75, 0)
	4

	= ROUND(“$3.74”, 1)
	3.7

	= ROUND(UnitPrice, 1)
	The rounded value of UnitPrice upto 1 decimal place.

	= ROUND(“abcd”, “efg”)
	Displays message “ROUND(abcd, efg): Input string was not in a correct format.”

	= POWER(ROUND(UnitPrice), 2)
	The square of the round value of UnitPrice

	= MAX(ROUND(UnitPrice), 12)
	The maximum among the round value of UnitPrice and the number 12.

[bookmark: _Toc259526332][bookmark: _Ref259630439][bookmark: _Toc414873159]SQRT
Returns a positive square root of the number passed to the function.
Syntax
= SQRT(value)
Parameters
	value
	A number whose square root is to be calculated. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “SQRT(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= SQRT(3.79)
	1.94679223339318

	= SQRT(“95%”)
	0.974679434480896

	= SQRT(-3.79)
	“Error: SQRT(-3.79): Value was either too large or too small for a decimal.”

	= SQRT(UnitPrice)
	The square root of UnitPrice.

	= SQRT(“abcd”)
	Displays message “SQRT(abcd): Input string was not in a correct format.”

	= POWER(SQRT(UnitPrice), 3)
	The square root of UnitPrice, raised to the power of 3.

	= MAX(SQRT(UnitPrice), 12)
	The maximum among the square root of UnitPrice and the number 12.

[bookmark: _Toc259526333][bookmark: _Ref259630442][bookmark: _Toc414873160]TRUNC
Returns the integer part of the number passed to the function.
Syntax
= TRUNC(value)
Parameters
	value
	A number whose integer part is to be extracted. The number can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string, or as the value of a variable (e.g, UnitPrice).

Return Type
Decimal number.
In the case of an error, the function displays an error message: “TRUNC(number): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= TRUNC(1.789)
	1

	= TRUNC(-2.789)
	-2

	= TRUNC(“100.83%”)
	1

	= TRUNC(UnitPrice)
	The truncated value of the UnitPrice

	= TRUNC(“abcd”)
	Displays message “TRUNC(abcd): Input string was not in a correct format.”

	= POWER(TRUNC(UnitPrice), 2)
	The square of the truncated value of UnitPrice

	= MAX(TRUNC(UnitPrice), 12)
	The maximum among the truncated value of UnitPrice and the number 12.

[bookmark: _Toc259526401][bookmark: _Toc414873161]Session, Cookie, URL and Other Functions
Related topics
CACHE
COOKIE
DECRYPT
ENCRYPT
RESOURCE
ROLES
SESSION
URL
USERID
USERNAME
USERRECORD

[bookmark: _Toc260418824][bookmark: _Ref260670504][bookmark: _Toc414873162]CACHE
Returns the value of the variable passed to the function, from the cache. Before retrieving the cache variable value, the value has to be stored in the variable.
Syntax
= CACHE(value)
Parameters
	Value
	A cache variable whose value is to be found. The value should be specified as a string (e.g., “var”).

Return Type
String. The function can be used in combination with other functions.
Examples
	Example
	Returns

	= CACHE("userName")
	The userName value stored in the cache.

	= CACHE("OrderID")
	The OrderID value stored in the cache.

	= CACHE("domain")
	The domain name stored in the cache.

	= ENCRYPT(CACHE(“UserID”))
	The encrypted version of the UserID stored in the cache.

	= DECRYPT(CACHE(“MyUsername”))
	The decrypted version of the cache variable “MyUsername”.

[bookmark: _Toc259526403][bookmark: _Ref259635361][bookmark: _Toc414873163]COOKIE
Returns the value of the variable passed to the function, from the cookie. Before retrieving the cookie variable value, it has to be stored by using the “Save into Cookie” property in the Property Sheet.
Syntax
= COOKIE(value)
Parameters
	Value
	A cookie variable whose value is to be found. The value should be specified as a string (e.g., “var”).

Return Type
String. The function can be used in combination with other functions.
Examples
	Example
	Returns

	= COOKIE(“lastVisit”)
	Date customer last visited the page.

	= COOKIE("userName")
	The userName value stored in the cookie.

	= COOKIE("userInfo")
	The userInfo value stored in the cookie.

	= COOKIE("domain")
	The domain name stored in the cookie.

	= ENCRYPT(COOKIE(“CustomerID”))
	The encrypted version of the CustomerID stored in the cookie.

	= DECRYPT(COOKIE(“MyUsername”))
	The decrypted version of the cookie variable “MyUsername”.

[bookmark: _Toc259526407][bookmark: _Ref259635370]
[bookmark: _Ref296343439][bookmark: _Toc414873164]DECRYPT
Return the decrypted value of the string passed to the function. Decrypts using encryption key and SessionId so only can decrypt values encrypted in the same session of the application. Use it to decrypt URL parameters and other application runtime values. Not recommended for decryption of values coming from database.
Syntax
= DECRYPT(value)
Parameters
	value
	The value which has to be decrypted. The value should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= DECRYPT(Session(“OrderID”))
	The decrypted value of the OrderID variable stored in Session

	= DECRYPT("UserName")
	The decrypted value of the UserName variable.

[bookmark: _Toc259526406][bookmark: _Ref259635368][bookmark: _Toc414873165]ENCRYPT
Returns the encrypted value of the string passed to the function. Encrypts using encryption key and SessionId. Use it to encrypt URL parameters and other application runtime values which will be decrypted in the same session. Not recommended for encryption of values coming from database.
Syntax
= ENCRYPT(value)
Parameters
	value
	The value which has to be encrypted. The value should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= ENCRYPT(OrdersRecordControl.OrderID.Text)
	The encrypted value of the OrderID UI control.

	= ENCRYPT("UserName")
	The encrypted value of UserName variable.

[bookmark: _Toc414873166][bookmark: _Toc259526405][bookmark: _Ref259635366]DECRYPTDATA
Return the decrypted value of the string passed to the function. Decrypts using encryption key but does not use Session id. Use it to decrypt data from database or when include a URL in the email. Not recommended for decryption of URL parameters in application.
Syntax
= DECRYPTDATA(value)
Parameters
	value
	The value which has to be decrypted. The value should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= DECRYPTDATA(Password)
	The decrypted value of the Password field.

[bookmark: _Toc414873167]ENCRYPTDATA
Returns the encrypted value of the string passed to the function. Encrypts using encryption key but does not use Session id. Use it to decrypt data from database or when include a URL in the email. Not recommended for encryption of URL parameters in application.
Syntax
= ENCRYPTDATA (value)
Parameters
	value
	The value which has to be encrypted. The value should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= ENCRYPTDATA(Password)
	The encrypted value of the Password field.

[bookmark: _Toc414873168]RESOURCE
Returns the value of the resource key. Only the application resources are returned by this function.
Syntax
= RESOURCE(value)
Parameters
	value
	The resource key whose value is to be extracted. The key should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= RESOURCE(“Btn:Add”)
	The resource value of the Add button.

	= RESOURCE("DeleteConfirm")
	The resource value of “DeleteConfirm” key.

	= RESOURCE("Err:RecDoesNotExist")
	The error message stored in the .resx file.

[bookmark: _Toc259526410][bookmark: _Ref259635377][bookmark: _Toc414873169]ROLES
Return the Role IDs belonging to the currently logged in user.
Syntax
= ROLES
Parameters
None
Return Type
String[]
Examples
	Example
	Returns

	= ROLES.Length
	The number of roles.

	= IF(“Engineering” IN ROLES, True, False)
	

	= STRING.JOIN(“,”, ROLES)
	To display a string of roles separated by comma.

[bookmark: _Toc259526402][bookmark: _Ref259635360][bookmark: _Toc414873170]SESSION
Returns the session value of variable passed to the function. Before retrieving the session variable value, it has to be stored by using the “Save Into Session variable” property in the Property Sheet.
Syntax
= SESSION(value)
Parameters
	value
	A session variable whose value is to be found. The variable should be specified as a string (e.g., “var”).

Return Type
String. The function can be used in combination with other functions.
Examples
	Example
	Returns

	= SESSION(“var”)
	The value of session variable “var”

	= SESSION("OrderID")
	The OrderID if it is stored as a session variable.

	= ENCRYPT(SESSION(“CustomerID”))
	The encrypted version of the CustomerID stored in the session.

	= DECRYPT(SESSION(“MyUsername”))
	The decrypted version of the session variable “MyUsername”.

[bookmark: _Toc259526404][bookmark: _Ref259635363][bookmark: _Toc414873171]URL
Returns the value of the URL parameter passed to the current page. If the URL is a Key Value pair, return the column value of the XML structure.
Syntax
= URL(value)
= URL(value, column)
Parameters
	value
	A URL parameter whose value is to be found. The parameter should be specified as a string.

	column
(optional)
	An XML column value passed in an XML structure to the URL. It should be specified as a string.

Return Type
String
Examples
	Example
	Returns

	= URL("Orders")
	The value of Orders URL parameter passed to the page.

	= URL("Username")
	The value of Username passed to the page as URL parameter.

	= URL("Orders","OrderID")
	The value of OrderID which is passes as an XML structure to the page.

[bookmark: _Toc259526408][bookmark: _Ref259635373][bookmark: _Toc414873172]USERID
Return the User ID of the currently logged in user.
Syntax
= USERID()
Parameters
None
Return Type
String
Examples
	Example
	Returns

	= USERID()
	The User ID of the logged in user.

[bookmark: _Toc259526409][bookmark: _Ref259635374][bookmark: _Ref260325546][bookmark: _Toc414873173]USERNAME
Return the User Name of the currently logged in user.
Syntax
= USERNAME()
Parameters
None
Return Type
String
Examples
	Example
	Returns

	= USERNAME()
	The User Name of the logged in user.

[bookmark: _Ref260670663][bookmark: _Toc414873174]USERRECORD
Returns the value of the column from the currently logged in user's database record.
Syntax
= USERRECORD(value)
Parameters
	Value
	A column variable whose value is to be found from the user’s database record. The value should be specified as a string (e.g., “var”).

Return Type
String
Examples
	Example
	Returns

	= USERECORD(“EmailAddress”)
	The email address of the logged in user.

	= USERRECORD("UserName")
	The UserName of the logged in user

	= USERRECORD("UserId")
	The UserId of the logged in user

[bookmark: _Toc259526425][bookmark: _Toc414873175]Record Control-Level Functions
Related topics
RANK
ROWNUM
RUNNINGTOTAL

[bookmark: _Toc259526427][bookmark: _Ref259635417][bookmark: _Ref260322770][bookmark: _Toc414873176]RANK
Returns rank of the values displayed in the rows and belonging to the specified control. For example, if there are 5 rows belonging to the Order_DetailsTableControlRow containing values for UnitPrice control as 57, 32, 12, 19, and 98 then the rank for the number 57 is 4, which is its position after arranging the values in ascending order. This function is called as <RecordControlName>.RANK("<ControlName>"). Use a RecordControl instance to indicate which RecordControl contains the values to be operated on by the function (e.g., Order_DetailsTableControlRow, ProductsTableControlRow, CategoriesTableControlRow).
Syntax
= <RecordControlName>.RANK(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose rank is to be calculated for the specified record. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControlRow.RANK(“UnitPrice”)
	The rank of the values in the “UnitPrice” control which belongs to the ProductsTableControlRow.

	= Order_DetailsTableControlRow.RANK(“Quantity”)
	The rank of the values in the “Quantity” control which belongs to the Order_DetailsTableControlRow.

	= CategoriesTableControlRow. RANK (“Discount”)
	The rank of the values in the “Discount” control which belongs to the CategoriesTableControlRow.

[bookmark: _Toc259526426][bookmark: _Ref259635416][bookmark: _Ref260322771][bookmark: _Toc414873177]ROWNUM
Returns the row number of the values displayed in the rows of the table control. This function is called as <RecordControlName>.ROWNUM(). Use a RecordControl instance to indicate which RecordControl contains the values to be operated on by the function (e.g., Order_DetailsTableControlRow, ProductsTableControlRow, CategoriesTableControlRow).
Syntax
= <RecordControlName>.ROWNUM()
Parameters
None
Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControlRow.ROWNUM()
	The row number of the ProductsTableControlRow.

	= Order_DetailsTableControlRow.ROWNUM()
	The row number of the Order_DetailsTableControlRow.

	= CategoriesTableControlRow. ROWNUM ()
	The row number of the CategoriesTableControlRow.

[bookmark: _Ref260322772][bookmark: _Toc414873178]RUNNINGTOTAL
The running total represents an instantaneous total of the data which can be updated each time a new number is added to the sequence, simply by adding the new number to the running total. It is of use in Order Management portals which record the total of each order, and add the total of each order to the total of all the others after the order is placed to maintain the running total. If an order is cancelled, that sum is subtracted, and the running total continues to be maintained.
For example, if there are 5 rows belonging to the Order_DetailsTableControlRow containing values for UnitPrice control as 57, 32, 12, 19, and 98 then the running total for the row containing value 12 is 101, which is the sum of all the values in the rows before the row and including it. This function is called as <RecordControlName>.RUNNINGTOTAL("<ControlName>"). We need to use a RecordControl instance to indicate which RecordControl contains the values to be operated on by the function (e.g., Order_DetailsTableControlRow, ProductsTableControlRow, CategoriesTableControlRow).
Syntax
= <RecordControlName>.RUNNINGTOTAL(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose running total is to be calculated for the specified record. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControlRow.RUNNINGTOTAL(“UnitPrice”)
	The running total of the values in the “UnitPrice” control which belongs to the ProductsTableControlRow.

	= Order_DetailsTableControlRow.RUNNINGTOTAL(“Quantity”)
	The running total of the values in the “Quantity” control which belongs to the Order_DetailsTableControlRow.

	= CategoriesTableControlRow.RUNNINGTOTAL(“Discount”)
	The running total of the values in the “Discount” control which belongs to the CategoriesTableControlRow.

[bookmark: _Toc414873179]String Functions
Related topics
CAPITALIZE
CHARACTER
CONCATENATE
EXACT
FIND
LEFT
RIGHT
LEN
LOWER
MID
REPLACE
REPT
SUBSTRING
TRIM
UPPER

[bookmark: _Toc259526345][bookmark: _Ref259630708][bookmark: _Toc414873180]CAPITALIZE
Capitalizes the string passed to the function. Only the first character is converted to upper case and the rest remain the same
Syntax
= CAPITALIZE(value)
Parameters
	value
	A string which is to be capitalized. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), or as the value of a variable (e.g, FirstName).

Return Type
String
In the case of an error, the function displays an error message: “CAPITALIZE(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= CAPITALIZE(“test”)
	“Test”

	= CAPITALIZE(“iron speed designer”)
	“Iron speed designer”

	= CAPITALIZE(Product)
	The capitalized version of the value of the value of Product.

	= UPPER(FirstName)
	The capitalized version of the value of the values of FirstName.

	= CAPITALIZE(RIGHT(“iron speed designer”, 8))
	A capitalized version of the extracted string.

	= CAPITALIZE(CONCATENATE(“iron “, “speed “, “designer”))
	A capitalized version of the concatenated string.

	= CAPITALIZE(“iron speed”). INSERT(10, “ designer”)
	A capitalized version of the string obtained after insertion.

[bookmark: _Toc259526340][bookmark: _Ref259630698][bookmark: _Toc414873181]CHARACTER
Returns the character for the corresponding ascii value.
Syntax
= CHARACTER(value)
Parameters
	value
	A value which is to be converted to its equivalent character. The value can be specified as an integer (e.g., 37) or as a string (e.g., “A”).

Return Type
Character.
In the case of an error, the function displays an error message: “CHARACTER(value): Error message”
Examples
	Example
	Returns

	= Character(“A”)
	‘A’

	= CHARACTER(37)
	‘%’

	= CHARACTER(1234)
	’Ӓ’

	= CHARACTER(“abcd”)
	Displays message “CHARACTER(abcd): String must be exactly one character long.”

[bookmark: _Toc259526353][bookmark: _Ref259630726][bookmark: _Toc414873182]CONCATENATE
Concatenates the elements of the array passed to the function.
Syntax
= CONCATENATE(args)
Parameters
	Args
	An array whose elements have to be concatenated. The array can contain integers (e.g., 37), decimal values (e.g., 37.48), strings, or values of a variable (e.g, UnitPrice).

Return Type
String
In the case of an error, the function displays an error message: “CONCATENATE(args): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= CONCATENATE(“This”, “is”, “good”)
	This is good

	= CONCATENATE(“$”,1234)
	$1234

	= CONCATENATE(FirstName, “.”, LastName)
	The value of FirstName and LastName concatenated with a “.” as separator.

	= CONCATENATE(UPPER(“Iron Speed”), “DESIGNER”)
	The concatenated version of the string passed and the upper case converted string.

	= CONCATENATE(“Iron”, SUBSTRING(“Iron Speed Designer”, 5, 5))
	A concatenated version of the extracted string with the passed string.

[bookmark: _Toc259526341][bookmark: _Ref259630700][bookmark: _Toc414873183]EXACT
Returns true if both the values entered are exactly the same.
Syntax
= EXACT(value1, value2)
Parameters
	value1
	A value which has to be compared. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

	value2
	A value which has to be compared. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

Return Type
Boolean.
In the case of an error, the function displays an error message: “EXACT(value1, value2): Error message”
Examples
	Example
	Returns

	= EXACT(37, 37)
	True

	= EXACT(“t est”, “test”)
	False

	= EXACT(37, “37”)
	True

	= EXACT(OrderID, 10248)
	True if the value of OrderID is 10248

[bookmark: _Toc259526342][bookmark: _Ref259630702][bookmark: _Toc414873184]FIND
Returns the index of the position in second string where the first string was found. The search starts after the specified position and if the start position is not passed then treats 0 as the start position. The function uses zero-based indexing.
Syntax
= FIND(find_val, within_val)
= FIND(find_val, within_val, start_position)
Parameters
	find_val
	A value which has to be found. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

	within_val
	A string which contains the text, the function is searching for. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

	start_position (optional)
	A positive integer which specifies the position for the function to start finding from.

Return Type
Integer.
In the case of an error, the function displays an error message: “FIND(find_val, within_val): Error message” or “FIND(find_val, within_val, start_position): Error message”.
Examples
	Example
	Returns

	= FIND(“Speed”, “Iron Speed Designer”)
	5

	= FIND(“t”, “test”, 2)
	3

	= FIND(37, “2537”)
	2

	= FIND(“$”, “$37.2”)
	0

	= FIND(“,”, UnitPrice)
	The position of “,” in the value of UnitPrice

[bookmark: _Toc259526343][bookmark: _Ref259630705][bookmark: _Toc414873185]LEFT
Returns string of specified length from the left of the string passed to the function. If the number of characters are not passed then only returns the left most character.
Syntax
= LEFT(str)
= LEFT(str, num_chars)
Parameters
	Str
	A string which contains the characters to be extracted. The value can be specified as an integer (e.g., 37), as a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

	num_chars (optional)
	A positive integer which specifies the number of characters to be extracted.

Return Type
String.
In the case of an error, the function displays an error message: “LEFT(str): Error message” or “LEFT(str, num_chars): Error message”.
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= LEFT(“test”)
	“t”

	= LEFT(“Iron Speed Designer”, 10)
	“Iron Speed”

	= LEFT(OrderID, 4)
	The first four digits of the OrderID.

	= LEFT(“$1234”)
	“$” sign

	= UPPER(LEFT(“Iron Speed”, 4))
	The upper case version of the extracted string.

	= CONCATENATE(LEFT(“Iron Speed Designer”, 10), “,a .NET code generator”)
	A concatenated version of the extracted string and the passed string.

[bookmark: _Toc259526346][bookmark: _Ref259630710][bookmark: _Toc414873186]LEN
Returns the length of the value passed to the function.
Syntax
= LEN(value)
Parameters
	value
	A string whose length is to be determined. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

Return Type
Integer
In the case of an error, the function displays an error message: “LEN(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= LEN(“test”)
	4

	= LEN(“Iron Speed Designer”)
	19

	= LEN(OrderID)
	The number of digits in the value of OrderID

	= LEN(“$1234”)
	5

	= LEN(REPLACE(“This is good”, 9, 4, “bad”)
	The length of the replaced string.

	= LEN(CONCATENATE(“Iron”, “Speed”, “Designer”))
	length of concatenated version of all the strings.

[bookmark: _Toc259526347][bookmark: _Ref259630711][bookmark: _Toc414873187]LOWER
Converts all the characters in the string to lowercase.
Syntax
= LOWER(value)
Parameters
	value
	A string which is to be converted to lowercase. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“Word”), or as the value of a variable (e.g, FirstName).

Return Type
String
In the case of an error, the function displays an error message: “LOWER(value): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= LOWER(“TeSt”)
	“test”

	= LOWER(“Iron Speed Designer”)
	“iron speed designer”

	= LOWER(Product)
	The lower case converted version of the value of Product.

	= LOWER(FirstName)
	The lower case converted version of the value of FirstName.

	= LOWER(RIGHT(“Iron Speed Designer”, 8))
	A lower case version of the extracted string.

	= LOWER(CONCATENATE(“Iron”, “Speed”, Designer”))
	A lowercase version of the concatenated string.

[bookmark: _Toc259526349][bookmark: _Ref259630716][bookmark: _Toc414873188]MID
Returns a substring of specified length from the string passed to the function, starting with the specified index. The function uses zero-based indexing.
Syntax
= MID(str, startIndex, length)
Parameters
	str
	A string that contains the characters which have to be extracted. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), as the value of a variable (e.g, FirstName) or as a date ("02/19/2009”)

	startIndex
	A positive integer which specifies the start position from which characters have to be extracted.

	length
	A non negative integer which specifies the number of characters to be extracted.

Return Type
String
In the case of an error, the function displays an error message: “MID(str, startIndex, length): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= MID(“TEST”, 2, 2)
	“ES”

	= MID(“Iron Speed Designer”, 5, 5)
	“Speed”

	= MID(“$1234”, 0, 1)
	“$" which is the currency sign

	= Mid(FirstName, 0, 1)
	The first character of the first name.

	= UPPER(MID(“Iron Speed Designer”, 5, 5))
	The upper case version of the extracted string.

	= CONCATENATE(“Iron”, MID(“Iron Speed Designer”, 5, 5))
	A concatenated version of the extracted string with the passed string.

[bookmark: _Toc259526351][bookmark: _Ref259630722][bookmark: _Toc414873189]REPLACE
Replaces a part of the string passed to the function with a new string. A start position and the number of characters to be replaced are also passed to the function. The function uses zero-based indexing.
Syntax
= REPLACE(orig_str, startIndex, length, new_str)
Parameters
	orig_str
	A value that contains the characters which have to be replaced. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), as the value of a variable (e.g, FirstName), or as a Date (“02/19/2009”)

	startIndex
	A positive integer which specifies the start position from which characters have to be extracted.

	length
	A non negative integer which specifies the number of characters to be extracted.

	new_str
	The string which would replace the characters in the original string. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), as the value of a variable (e.g, FirstName), or as a Date (“02/19/2009”)

Return Type
String
In the case of an error, the function displays an error message: “Replace(orig_str, startIndex, length, new_str): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= REPLACE(“This is good”, 8, 4, “bad”)
	“This is bad”

	= REPLACE("$1,234", 0, 1, "£")
	“£1,234”

	= REPLACE(ShippedDate, 6, 2, ““)
	The ShippedDate with the year having 2 digits instead of 4 digits.

	= UPPER(REPLACE(“This is good”, 8, 4, “bad”))
	The upper case version of the string which is a result of replacement.

	= CONCATENATE(“Ship year: “, REPLACE(ShippedDate, 5, 2, ““))
	A concatenated version of the extracted string with the passed string.

[bookmark: _Toc259526352][bookmark: _Ref259630723][bookmark: _Toc414873190]REPT
Repeats a string specified number of times.
Syntax
= REPT(str, numberOfTimes)
Parameters
	str
	A string which has to be repeated. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), as the value of a variable (e.g, FirstName), or as a Date (“02/19/2009”).

	numberOfTimes
	A positive integer indicating the number of times the string should be repeated.

Return Type
String
In the case of an error, the function displays an error message: “REPT(str, numberOfTimes): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= REPT(“*”, 4)

	= REPT(UnitPrice, 3)
	A string containing the value of UnitPrice repeated thrice.

	= UPPER(REPT(“Iron Speed Designer”, 2))
	The upper case version of the repeated string.

	= CONCATENATE(“Rating: “, REPT(“*”, 4))
	A concatenated version of the repeated string with the passed string.

[bookmark: _Toc259526344][bookmark: _Ref259630706][bookmark: _Toc414873191]RIGHT
Returns the last characters based on the specified length. If the number of characters are not passed then only returns the right most character.
Syntax
= RIGHT(str)
= RIGHT(str, num_chars)
Parameters
	str
	A string which contains the characters to be extracted. The value can be specified as an integer (e.g., 37), a decimal value (e.g., 37.48), as a string (“word”), or as the value of a variable (e.g, UnitPrice).

	num_chars (optional)
	A positive integer which specifies the number of characters to be extracted.

Return Type
String.
In the case of an error, the function displays an error message: “RIGHT(str): Error message” or “RIGHT(str, num_chars): Error message”.
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= RIGHT(“test”)
	“t”

	= RIGHT(“Iron Speed Designer”, 8)
	“Designer”

	= RIGHT(OrderID, 4)
	The last four digits of the OrderID.

	= RIGHT(“27%”)
	“%” sign

	= UPPER(RIGHT(“Iron Speed Designer”, 8))
	The upper case version of the extracted string.

	= TRIM(RIGHT(“Iron Speed Designer”, 9))
	A trimmed version of the extracted string.

[bookmark: _Toc259526350][bookmark: _Ref259630719][bookmark: _Toc414873192]SUBSTRING
Returns a substring of specified length from the string passed to the function, starting with the specified index. If the length is not passed then returns a string from the start position till the end of the string. The function uses zero-based indexing.
Syntax
= SUBSTRING(str, startIndex)
= SUBSTRING(str, startIndex, length)
Parameters
	str
	A string that contains the characters which have to be extracted. . The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), as the value of a variable (e.g, FirstName) or as a date ("02/19/2009”)

	startIndex
	A positive integer which specifies the start position from which characters have to be extracted.

	Length (optional)
	A non negative integer which specifies the number of characters to be extracted.

Return Type
String
In the case of an error, the function displays an error message: “SUBSTRING(str, startIndex, length): Error message” .
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= SUBSTRING(“TEST”, 2)
	“ST”

	= SUBSTRING(“Iron Speed Designer”, 5, 5)
	“Speed”

	= SUBSTRING(“$1234”, 0, 1)
	“$" which is the currency sign

	= SUBSTRING(FirstName, 0, 1)
	The first character of the first name.

	= UPPER(SUBSTRING(“Iron Speed Designer”, 5, 5))
	The upper case version of the extracted string.

	= CONCATENATE(“Iron”, SUBSTRING(“Iron Speed Designer”, 5, 5))
	A concatenated version of the extracted string with the passed string.

[bookmark: _Toc259526354][bookmark: _Ref259630729][bookmark: _Toc414873193]TRIM
Trims the leading and trailing spaces from the string passed to the function.
Syntax
= TRIM(str)
Parameters
	str
	A string whose spaces have to be trimmed. Its value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), or as the value of a variable (e.g, FirstName).

Return Type
String
In the case of an error, the function displays an error message: “TRIM(str): Error message”
The function can be used in combination with other functions.
Examples
	Example
	Returns

	= TRIM(“ Iron Speed Designer “)
	“Iron Speed Designer”

	= TRIM(Product)
	The value of Product without leading or trailing spaces.

	= TRIM(RIGHT(“Iron Speed Designer”, 9))
	A trimmed version of the extracted string.

	= TRIM(“ Iron”, SUBSTRING(“Iron Speed Designer”, 6, 5))
	A trimmed version of the extracted string concatenated with the passed string.

[bookmark: _Toc259526348][bookmark: _Ref259630715][bookmark: _Toc414873194]UPPER
Converts all the characters in the string to uppercase.
Syntax
= UPPER(value)
Parameters
	value
	A string which is to be converted to uppercase. The value can be specified as a decimal value (e.g., 37.48), as a string (“Word”), or as the value of a variable (e.g, FirstName).

Return Type
String
In the case of an error, the function displays an error message: “UPPER(value): Error message”
Examples
	Example
	Returns

	= TRIM(“ Iron Speed Designer “)
	“Iron Speed Designer”

	= UPPER(“TEST”)
	“TEST”

	= UPPER(“Iron Speed Designer”)
	“IRON SPEED DESIGNER”

	= UPPER(Product)
	The upper case converted version of the value of Product.

	= UPPER(FirstName)
	The upper case converted version of the value of FirstName.

	= UPPER(RIGHT(“Iron Speed Designer”, 8))
	The upper case version of the extracted string.

	= UPPER(CONCATENATE(“Iron”, “Speed”, Designer”))
	An uppercase version of the concatenated string.

	= UPPER(“iron speed”). INSERT(10, “ DESIGNER”)
	A upper case string concatenated with the string supplied to the insert function.

[bookmark: _Toc259526416][bookmark: _Toc414873195][bookmark: _Toc259526411]Table Control-Level Functions
Related topics
AVERAGE
COUNT
COUNTA
MEAN
MEDIAN
MODE
RANGE
SUM
TOTAL

[bookmark: _Toc259526421][bookmark: _Ref259635402][bookmark: _Ref260322534][bookmark: _Toc414873196]AVERAGE
Returns the average of the values displayed in the rows of the table control. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.AVERAGE("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.AVERAGE(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose average is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.AVERAGE(“UnitPrice”)
	The average of the values displayed in the rows of the “UnitPrice” control.

	= Order_DetailsTableControl.AVERAGE("Quantity")
	The average of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.AVERAGE("Discount")
	The average of the values displayed in the rows of the “Discount” control.

[bookmark: _Toc259526418][bookmark: _Ref259635395][bookmark: _Ref260322531][bookmark: _Toc414873197]COUNT
Returns count of the rows displayed in the table control. This function is called as <TableControlName>.COUNT("ControlName"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Note: This function returns the count of the rows displayed on the page. This will be less than or equal to the number of rows set in the pagination control. Specifically, it does not return the count of all of the records on all pages. Only the count of the records on the currently displayed set of rows is returned.
Syntax
= <TableControlName>.COUNT(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose count is to be determined. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, Discount). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a string (“IronSpeed”), or a null value.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.COUNT(“UnitPrice”)
	The number of rows in the “UnitPrice” control.

	= Order_DetailsTableControl.COUNT ("Quantity")
	The number of rows in the “Quantity” control.

	= Order_DetailsTableControl.COUNT ("Discount")
	The number of rows in the “Discount” control.

[bookmark: _Toc259526419][bookmark: _Ref259635398][bookmark: _Ref260322532][bookmark: _Toc414873198]COUNTA
Returns count of the rows in the table control which contain a decimal value (as opposed to a NULL or an invalid value). The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.COUNTA("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.COUNTA(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose count is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, Discount). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a character (‘A’), or a string (“IronSpeed”).

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.COUNTA(“UnitPrice”)
	The number of rows in the “UnitPrice” control which are not null and are decimal values.

	= Order_DetailsTableControl.COUNTA("Quantity")
	The number of rows in the “Quantity” control which are not null and are decimal values.

	= Order_DetailsTableControl.COUNTA("Discount")
	The number of rows in the “Discount” control which are not null and are decimal values.

[bookmark: _Toc259526420][bookmark: _Ref259635401][bookmark: _Ref260322533][bookmark: _Toc414873199]MEAN
Returns the mean of the values displayed in the rows of the table controls. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.MEAN("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.MEAN(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose mean is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.MEAN(“UnitPrice”)
	The mean of those values only which are displayed in the rows of the “UnitPrice” control.

	= Order_DetailsTableControl.MEAN("Quantity")
	The mean of those values only which are displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.MEAN("Discount")
	The mean of those values only which are displayed in the rows of the “Discount” control.

[bookmark: _Toc259526423][bookmark: _Ref259635407][bookmark: _Ref260322536][bookmark: _Toc414873200]MEDIAN
Returns the median of the values displayed in the rows of the table controls. For example, if there are 5 rows containing values for UnitPrice as 57, 32, 12, 19, and 98, then the median is the number which falls in the middle after arranging the values in ascending order. In this case the median is 32.
The function accepts values only from textbox, label and literal controls. In cases where the number of values are even, the median is the average of the two middle numbers. This function is called as <TableControlName>.MEDIAN("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.MEDIAN(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose median is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.MEDIAN(“UnitsInStock”)
	The median of the values displayed in the rows of the “UnitsInStock” control.

	= Order_DetailsTableControl.MEDIAN("Quantity")
	The median of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.MEDIAN("Discount")
	The median of the values displayed in the rows of the “Discount” control.

[bookmark: _Toc259526422][bookmark: _Ref259635406][bookmark: _Ref260322535][bookmark: _Toc414873201]MODE
Returns a value which repeats itself most number of times among all the values displayed in the rows of the table control. For example, if there are 5 rows containing values for UnitPrice as 57, 57, 57, 19, and 98, then the mode is 57 which repeats itself the maximum number of times. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.MODE("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.MODE(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose mode is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), or a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.MODE(“UnitsInStock”)
	The mode of the values displayed in the rows of the “UnitsInStock” control.

	= Order_DetailsTableControl.MODE("Quantity")
	The mode of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.MODE("Discount")
	The mode of the values displayed in the rows of the “Discount” control.

[bookmark: _Toc259526424][bookmark: _Ref259635411][bookmark: _Ref260322537]
[bookmark: _Toc414873202]RANGE
Returns the range of the values displayed in the rows of the table controls. The function accepts values from textbox, label and literal controls which are a part of the specified table control. This function is called as <TableControlName>.RANGE("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function (e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl).
Syntax
= <TableControlName>.RANGE(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose range is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.RANGE(“UnitsInStock”)
	The range of the values displayed in the rows of the “UnitsInStock” control.

	= Order_DetailsTableControl.RANGE("Quantity")
	The range of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.RANGE("Discount")
	The range of the values displayed in the rows of the “Discount” control.

[bookmark: _Toc259526417][bookmark: _Ref259635394][bookmark: _Ref260322529][bookmark: _Ref260756271][bookmark: _Toc414873203]SUM
Returns the sum of the values displayed in the rows of the table control. The function accepts values only from textbox, label and literal controls. This function is called as <TableControlName>.SUM("<ControlName>"). Use a TableControl instance to indicate which TableControl contains the values to be operated on by the function, e.g., Order_DetailsTableControl, ProductsTableControl, CategoriesTableControl.
Note: This function is equivalent to the Page Total, and not the Grand Total. Specifically, it does not return the sum of all of the records on all pages. Only the sum of the records on the currently displayed set of rows is returned.
SUM() can be used anywhere within a table control, except within the repeater row area.
Syntax
= <TableControlName>.SUM(controlName)
Parameters
	controlName
	It represents the name of the control which contains the values whose sum is to be calculated. The controlName should be a string (e.g., “UnitPrice”, “Quantity”, “Discount”). The values in the control can be an integer (e.g., 37), a decimal value (e.g., 37.48), a string.

Return Type
Decimal
Examples
	Example
	Returns

	= ProductsTableControl.SUM(“UnitPrice”)
	The sum of the values displayed in the rows of the “UnitPrice” control.

	= Order_DetailsTableControl.SUM("Quantity")
	The sum of the values displayed in the rows of the “Quantity” control.

	= Order_DetailsTableControl.SUM("Discount")
	The sum of the values displayed in the rows of the “Discount” control.

[bookmark: _Ref260322530][bookmark: _Toc414873204]TOTAL
Returns the sum of the values displayed in the rows of the table control. The function accepts values only from textbox, label and literal controls. This function is called as
<TableControlName>.TOTAL("<ControlName>")
A TableControl instance indicates which TableControl contains the values to be operated on by the function, e.g.,
Order_DetailsTableControl
ProductsTableControl, CategoriesTableControl
The function is synonymous with the SUM function and has similar syntax and functionality.
See SUM for details.
[bookmark: _Ref421197868]New and Customized Functions
It is very easy to customize any existing function or add your own to use on particular page or throughout the application.
[bookmark: _Ref421197716]Global Function Customization
All existing Functions are implemented in the Data Access Layer \ Shared \ BaseFormulaUtils.vb(cs) file. Existing Functions are generated in the BaseFormulaUtilsGEN class. This class is inherited by empty (shell) BaseFormulaUtils class where you can override existing function or add your own:
[image:]

To override you need to mark it Shadows for VB.NET and new for C# like this:
 Public Shared Shadows Function IsEven(ByVal val As Object) As Boolean
 Return False
 End Function
You can call these functions same way as any existing function.
Local Custom Functions
You can add function visible only on the single page or panel.
Custom Page Function
Add it to the page class Section 1:
[image:]
Call it with Page qualifier:
[image:]
Custom Control Function
You can add function to Record, Table or Row class:
[image:]
And call it with the class qualifier:
[image:]

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image113.png

image114.png

image115.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image122.png

image123.png

image124.png

image2.png

image3.png

image4.png

image5.png

image125.png

image6.png

image126.png

image127.png

image128.png

image129.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image1.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

image86.png

