[bookmark: _Toc74555047][bookmark: _Toc414880229]Part X: Fine-Tuning Application Behavior
Part X: Fine-Tuning Application Behavior
Adding New Web Pages to Your Application
Adding Foreign Key Table and Look Up Table Pages
Using Tab Groups to Organize Fields
Localizing (Internationalizing) Your Application
Customizing Error and Validation Message Strings
Resource File Format
Editing Resource Files
Enabling Language Support in Microsoft Windows
United States Phone Numbers, States and ZIP Codes
Creating a Multi-Lingual Application
Customizing Gallery Pages
Customizing Quick Selector Pages
Configuring Modal Pop-up Pages
Configuring Infinite Pagination
Creating Reusable ASCX Panels and Components
Example: Creating Button Panels
Capturing the Enter Key in Application Pages
Setting Focus in Application Pages
Using iFrames in Application Pages

3

[bookmark: _Ref81200078][bookmark: _Toc81718424][bookmark: _Toc94675996][bookmark: _Toc117417297][bookmark: _Toc117417334][bookmark: _Toc411929883][bookmark: _Toc414880230][bookmark: _Ref234828323][bookmark: _Ref410033013][bookmark: _Ref410127977]Adding New Web Pages to Your Application

	Go to:
	Tools, Application Wizard…
Application Explorer, Right-Click, New, Page...

You may add new web pages to your application using either the Application Wizard or the Application Explorer.
Using the Application Wizard to create new pages
The Application Wizard is the easiest way to add new web pages to an existing Iron Speed Designer. It shows you the available page types and knows exactly where and how to add them to your application.
You can return to the Application Wizard as often as you wish to add new sets of pages. Oftentimes, developers will create similar sets of web pages for different user constituencies with different application generation options.
Using the Application Explorer to add pages
When you initialized your project, you provided Iron Speed Designer with a folder location where it creates your application. That folder and its sub-folders contain the input files used to build your application. You may place your pages in any sub-folder underneath your application’s main folder, for example:
...\<Application Folder>\Customers
Simply copy or move your page to an appropriate folder in your application’s folder. Iron Speed Designer automatically recognizes pages placed here and makes them part of your application.
[bookmark: _Ref214884079][bookmark: _Toc411929884]Including external ASPX pages in your Iron Speed Designer project
There is absolutely no requirement that you build and compile your external application with Iron Speed Designer in order to integrate your external application with an Iron Speed Designer application. However, in certain circumstances, you may find it convenient to do so.
To incorporate stand-alone ASPX pages into your Iron Speed Designer application, copy them into your Iron Speed Designer application’s folder.
If you are using the VBC or CSC compilers to compile your Iron Speed Designer application (set in the Application Wizard), there are no additional changes that need to be made. Your external ASPX pages will be automatically compiled at run-time by the VBC or CSC compilers.
Adding external pages into Iron Speed Designer applications
You can place Iron Speed Designer created controls on pages in an external application. This is a great way to add data-bound controls, such as a data-bound text box, field value, or table, into your existing application.
Step 1: Place the external file into a subfolder of your Iron Speed Designer application, e.g.:
C:\MyApp\MyASPXPages
Step 2: Rename the newly added file with an .ASPX file extension, even though it may be another page type, such as HTML or ASP. Renaming the page to .ASPX allows Iron Speed Designer’s Application Explorer to recognize the page.
Step 3: In Iron Speed Designer, select View, Refresh to display this new file in the Application Explorer.
Step 4: Rebuild your application (Build, Rebuild All).
This external page will now be part of the Iron Speed Designer application.
Incorporating external ASCX controls into Iron Speed Designer-created ASPX pages
You can incorporate an external ASCX control and place this on an Iron Speed Designer created page.
Step 1: Repeat the steps in the previous section. However, rename the newly added file with an .ASCX file extension even though it may be another page type, such as HTML or ASP.
Step 2: After creating a new ASCX control, go to Layout Editor and drag an Include ASCX Component from the Toolbox onto the page. Name the component “Include”.
Step 3: Use the Property Sheet to select (configure) the appropriate control file for the newly added Include ASCX Component.
Step 4: Rebuild your application (Build, Rebuild All). Note that if you do not select a file, the component will not have a binding saved and no code will be created for this control. As such, these two steps are very important.
Your ASPX page should now be displayed with the same look and feel as the rest of your application.
Referencing existing web pages from an application built with Iron Speed Designer
You can easily integrate applications built with Iron Speed Designer with your existing applications and web pages. Because of the state-less nature of web programming, your existing application and an Iron Speed Designer application can operate as separate, independent applications, even though one may call into another via the URL mechanism inherent in all web applications.
An existing web application typically contains HTML, ASP, and JSP pages. You can reference or “call” these existing pages from within your Iron Speed Designer application by adding URLs to these pages within your Iron Speed Designer application. A simple URL might be:
See our fabulous products!
A more complex reference might include parameters in the URL, e.g.:
Enterprise Edition
Place URLs to existing applications in the appropriate cell via the Layout Editor in Layout Editor. Iron Speed Designer passes through to the ASPX page any content you add, so these URLs will be present in the final ASPX pages.
Referencing pages built with Iron Speed Designer within another application
Your existing applications can reference, or “call”, the ASPX pages created by Iron Speed Designer by adding URLs to your existing application pages. A simple URL might be:
See our fabulous products!
A more complex reference might include parameters in the URL, e.g.:
Enterprise Edition

[bookmark: _Ref193520877][bookmark: _Toc411929885][bookmark: _Toc414880231]Adding Foreign Key Table and Look Up Table Pages
It’s quite common to want a dropdown list in a web page that displays the values from another database table. For example, it is desirable to display a dropdown list of products by the product name rather than by the underlying Product ID value which is typically a numeric value.
	

	The Supplier and Category dropdown lists reference separate look up tables related to the Products table via foreign key relationships.

This is very easy to do in Iron Speed Designer using the 'Display As' database property. Iron Speed Designer uses foreign key relationships in your database to automatically hook up lookup tables referenced by foreign keys and create these dropdown lists on your behalf. In order for this to work, you must explicitly declare the foreign key relationship in your database between the parent table and the child table. Iron Speed Designer detects these relationships in your database and uses them when building pages. If you are not able to explicitly declare the foreign key relationship in your database, you can instruct Iron Speed Designer to treat certain fields as foreign key fields by using Iron Speed Designer's Virtual Foreign Key feature.
Step 1: Declare the foreign key relationships, either explicitly in your database or via Virtual Foreign Keys in Iron Speed Designer (Databases, New Virtual Foreign Key...).
Step 2: Scan your database schema for changes and accept those changes. (Databases, Scan Database Schema for Changes and Databases, Accept All Changes).
Step 3: Open the Application Wizard in Iron Speed Designer and select the tables you wish to use. Be sure to select both the primary (parent) table as well as the lookup (child) table.
Step 4: Click ‘Finish’ in the Application Wizard. Iron Speed Designer creates your application pages, including dropdown lists for any foreign key (lookup) tables.
Database views
It’s important to note that database views rarely have foreign key relationships defined in the database. Iron Speed Designer cannot detect underlying relationships between a database view and their underlying tables. Use Virtual Foreign Keys to define foreign key relationships between a database view and associated lookup table.

[bookmark: _Ref254172673][bookmark: _Toc411929888][bookmark: _Toc414880232][bookmark: _Ref411618417]Using Tab Groups to Organize Fields
You may have record panels containing a large number of fields, perhaps 50 or more, and displaying all these fields on the screen at one time may overwhelm application users. In these cases, you can use tab panels to group subsets of your fields into individual tabs for consolidated, better organized display.
Step 1: Navigate to the page level where you wish to place the tabs, such as the ‘fields’ section of a record or table panel control. You may optionally remove the existing set of fields.
 [image:]
Step 2: Drag several blank panels from the Toolbox onto your page, one for each group of fields you wish to create. In this example, we use the ‘Blank Panel without Header’ panel.
[image:]
Step 3: Navigate (drill into) to the first blank panel and drag the appropriate fields and labels from the Toolbox into the blank panel. Repeat this for each blank panel (tab group).
 [image:]
Step 4: Navigate back to the page level showing the newly added blank panels. Then apply tab groups (Right-click, Insert, Tabs). This creates a tab for each group of fields.
[image:]
Step 5: In the Property Sheet, rename the tab panels with meaningful names.
[bookmark: _GoBack] [image:]

[bookmark: _Ref252813338]Example: Placing Master and Detail Panels within the Same Tab Group
In Show Record pages, Iron Speed Designer typically places detail panels below the master panel. However, it is sometimes useful to put both master (parent) and detail (child) panels within the same set of tabs. This places both master and detail panels at the same visual level.
Here is a typical Show Customers Record page with the master panel (Customers) at the top and the detail panels (Quarterly Orders and Orders) at the bottom.
[image:]
Here is the same Show Customers Record page with all three panels within the same tab group. The Customers panel (master) is displayed at the same level visually as the detail panels.
[image:]
Step 1: Navigate to the page level layout using the page section dropdown in the Layout Editor.
The page level layout should show most of the panels on the page. In my example, there is a Customers record control (A1) and two detail panels (A2).
 [image:]
Step 2: Remove the tabs (right-click, Remove, Tabs) encapsulating the detail (child) panels. We'll add them back later.
 [image:]
Step 3: Move the master (parent) panel into the same cell as the detail panels.
 [image:]
Step 4: Re-apply the tabs (right-click, Insert, Tabs).
 [image:]
Step 5: You can optionally change the tab text via the Property Sheet for the TabPanel controls.

[bookmark: _Toc49837649][bookmark: _Toc49837844][bookmark: _Toc53046013][bookmark: _Toc58845144][bookmark: _Toc67124702][bookmark: _Toc74465839][bookmark: _Toc74555072][bookmark: _Ref114299030][bookmark: _Ref129583245][bookmark: _Toc414880233][bookmark: _Toc411929903]Localizing (Internationalizing) Your Application
Iron Speed Designer automatically creates multi-lingual, multi-cultural applications. You can instruct Iron Speed Designer to build your application for a particular culture via the Application Information screen of the Application Wizard in Iron Speed Designer.
	[image:]

	Applications built with Iron Speed Designer support local date formats, currency symbols and character sets.

A variety of factors, settings, and parameters contribute to a localized application:
· Culture encoding. Your application has a culture coding that indicates to the .NET Framework how to handle basic properties, like data and time formatting, language, etc.
· Page encoding. Iron Speed Designer supports UTF-8 Unicode encoding throughout your application.
· Date and time formatting. A variety of date and time formats are used worldwide. Applications built with Iron Speed Designer are built on the .NET Framework, so the date and time field displays and input fields take their cue from the particular culture setting in the Machine.config file or Web.config file.
· Number and currency formatting. Some number formats use a decimal point to separate dollars and cents; other formats use commas.
· Error text string translation. The error and information text messages in the application classes should be translated to the appropriate language for your application.
[bookmark: _Ref49794068][bookmark: _Toc49837653][bookmark: _Toc49837848][bookmark: _Toc53046014][bookmark: _Toc58845145][bookmark: _Toc67124703][bookmark: _Toc74465840][bookmark: _Toc74555073]Culture Encoding
The culture encoding attributes in your Web.config file determine many aspects of your .NET application, including currency, date, and number format. Your application uses these settings at run-time to determine proper operation. Since these culture encoding attributes are used by the .NET Framework, Iron Speed Designer does not use them directly. However, a discussion of them is included here due to their importance in localizing your application.
The culture encoding attributes are in the <configuration> section of Web.config, e.g.:
<configuration>
	<system.web>
		<globalization
			fileEncoding="utf-8"
			requestEncoding="utf-8"
			responseEncoding="utf-8"
		/>
	</system.web>
</configuration>
The following localization and culture encoding attribute information is from Microsoft’s “Setting the Culture and UI Culture for Web Forms Globalization.”
	Attribute
	Description

	Culture
uiCulture
	By specifying a culture it is possible to use a set of common preferences for information like strings and date and number formats that correspond to users' cultural conventions. A Web Forms page has two culture values, Culture and UICulture. The Culture value determines or influences results of culture-dependent functions, such as displaying the date. The UICulture value determines how the resources are loaded for the form and is used for culture-specific lookup of resource data. The only purpose of the UICulture value is to indicate the language the resources should load, that is, determine which language the UI strings should use. The Culture value determines everything else — date formatting, number formatting, and so on.
The two culture settings do not need to have the same value. Depending on your application, it may be important to set them separately. An example is a Web auction site. The UI culture changes for each Web browser, but the culture stays constant, so prices are always displayed in the same currency and formatting.
The Culture value can only be set to specific cultures such as en-US or en-GB. This prevents the problem of identifying the correct currency symbol to use for "en", where en-US and en-GB have different currency symbols.

	fileEncoding
	Specifies the default encoding for .aspx, .asmx, and .asax file parsing. Unicode and UTF-8 files saved with the byte order mark prefix will be automatically recognized regardless of the value of fileEncoding.

	requestEncoding
	Specifies the assumed encoding of each incoming request, including posted data and the query string. If the request comes with a request header containing an Accept-Charset attribute, it overrides the requestEncoding in configuration. The default encoding is UTF-8, specified in the <globalization> tag included in the Machine.config file created when the .NET Framework is installed. If request encoding is not specified in a Machine.config or Web.config file, encoding defaults to the computer's Regional Options locale setting. In single-server applications, requestEncoding and responseEncoding should be the same. For the less common cases (multiple-server applications where the default server encodings are different), you can vary the request and response encoding using local Web.config files.

	responseEncoding
	Specifies the content encoding of responses. This governs the character set used to display your application’s web pages and emails sent from your application.
Set responseEncoding to an appropriate value to ensure emails sent from your application are correctly encoded and display your language’s complete character set. For example, if your default language is French and you want French characters from the extended French character set to be correctly included and displayed in your emails, may set responseEncoding to “windows-1252”. Remove the responseEncoding parameter to use the setting in your machine.config file or to use the encoding defaults in your computer's Regional Options locale setting.
The default encoding is UTF-8, specified in the <globalization> section in the Machine.config file created when the .NET Framework is installed on your machine. If response encoding is not specified in your Machine.config file or your application’s Web.config file, encoding defaults to your computer's Regional Options locale setting.
In single-server applications, requestEncoding and responseEncoding should be the same. For the less common cases (multiple-server applications where the default server encodings are different), you can vary the request and response encoding using local Web.config files.

For more detail, see:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbtskeditingwebconfigfileforwebformsglobalization.asp
	[image:]

	An example Show Order Table page with set to display certain dates and currencies in localized formats.

Here are the localization settings for the Show Order Table page shown above. The Web.config globalization entry is set to “fr-FR” which, in turn, causes the Euro currency symbol to be used since the Euro is the official currency in France. Similarly, the DD/MM/YYYY European date format is used.
<!-- GLOBALIZATION
	This section sets the globalization settings of the application.
-->
	<globalization
		fileEncoding="utf-8"
		requestEncoding="utf-8"
		responseEncoding="utf-8"
		culture="fr-FR"
		uiCulture="fr-FR"
	/>
[bookmark: _Ref49794063][bookmark: _Toc49837650][bookmark: _Toc49837845][bookmark: _Ref50368136][bookmark: _Toc53046015][bookmark: _Toc58845146][bookmark: _Toc67124704][bookmark: _Toc74465841][bookmark: _Toc74555074]Page Encoding
Iron Speed Designer automatically sets the page encoding to UTF-8. (There are several HTML page encodings, including UTF-8, UT-16, and UTF-32.) In particular, Iron Speed Designer creates ASPX pages and ASCX controls with a UTF-8 Byte Order Mark (BOM) EF BB BF at the beginning of file. While not strictly required, this is considered the “correct way to do things” by many application developers.
For more detail on the UTF-8 page encoding, we recommend:
· http://www.ifi.unizh.ch/mml/mduerst/papers/PDF/IUC11-UTF-8.pdf
For more details on UTF-8 and the byte order mark, we recommend:
· http://www.opentag.com/xmli18nfaq.htm#enc_bom
[bookmark: _Ref49794065][bookmark: _Toc49837651][bookmark: _Toc49837846][bookmark: _Toc53046016][bookmark: _Toc58845147][bookmark: _Toc67124705][bookmark: _Toc74465842][bookmark: _Toc74555075]Character Sets
You can insert Unicode characters into your application’s source files in a variety of ways. Unicode characters may appear in:
· ASPX pages. Iron Speed Designer passes through any HTML, scripting code and other content to your application’s ASPX pages.
· Database tables. Your database tables may use any Unicode UTF-8 character set desired. Applications built with Iron Speed Designer will properly display the characters stored in your data fields.
· Properties settings. Properties settings containing Unicode characters entered through the Property Sheet.
Note: We recommend that you use only ASCII characters in:
· URLs referenced in the Property Sheet
· Filenames of your application’s source files
· Database table names
· Database table column names
[bookmark: _Ref49794066][bookmark: _Toc49837652][bookmark: _Toc49837847][bookmark: _Ref50380530][bookmark: _Toc53046017][bookmark: _Toc58845148][bookmark: _Toc67124706][bookmark: _Toc74465843][bookmark: _Toc74555076]Currency Formatting and Validation
Some currency formats use a decimal point to separate values, other formats use commas. Iron Speed Designer supports currency display in any localized format supported by the .NET Framework.
The table below shows several examples of currency symbols displayed for the number 123456789.76.
	Culture Encoding
	Format

	en-US
	$123,456,789.76

	es-ES
	123.456.789,76 €

	es-UY
	$U 123.456.789,76

	ru-RU
	123 456 789,76p

	sr-SP-Latn
	123.456.789,76 Din.

	sv-SE
	123.456.789,76 kr

Iron Speed Designer also supports currency validation in any localized format supported by the .NET Framework. This is accomplished by server-side validation, rather than client-side validation, allowing validation to be tailored to the locale of the web server.
[bookmark: _Ref50380532][bookmark: _Toc53046018][bookmark: _Toc58845149][bookmark: _Toc67124707][bookmark: _Toc74465844][bookmark: _Toc74555077]Date Formatting and Validation
Iron Speed Designer supports date display in any localized format supported by the .NET Framework.
Iron Speed Designer also supports date validation in any localized format supported by the .NET Framework. This is accomplished by server-side validation, rather than client-side validation, allowing validation to be tailored to the locale of the web server.

[bookmark: _Ref49794069][bookmark: _Toc49837654][bookmark: _Toc49837849][bookmark: _Ref50877505][bookmark: _Toc53046019][bookmark: _Toc58845150][bookmark: _Toc67124708][bookmark: _Toc74465845][bookmark: _Toc74555078][bookmark: _Toc414880234]Customizing Error and Validation Message Strings
Applications built with Iron Speed Designer contain a variety of data validation, information, and error messages that are automatically included in your application. The error message and validation message strings displayed by your application are contained in:
· The base class library.
(...\<Iron Speed Designer>\BaseClasses\Bin\)
· The application resource library.
(...\<Iron Speed Designer>\ProjectTemplates\Resources\)
These libraries contain translation resources for a number of cultures and languages. In addition you may change these messages to conform to the language and format of your choice. They are physically contained in two separate resource files (RESX), which are copied to your application. The files that are copied are considered part of your application and should be included when you move your application into production. Messages are retrieved from the files by your application at run-time. The files are:
· BaseClasses.<UI Culture>.resx. These system messages are primarily used for non-application specific messages in applications. Examples include bad input data format and concurrency handling messages.
· ProjectTemplate.<UI Culture>.resx. These application messages are used by your application for displaying data validation errors and for other application-level uses.
<UI Culture> is the valid ISO culture name, e.g.:
MyApp1.en-US.resx
MyApp1.de-DE.resx
MyApp1.it-IT.resx
BaseClasses.<UI Culture>.resx
When you create an application or select a new culture, Iron Speed Designer selects a file from the base class library and places it into your application’s project folder:
...\<App Name>\bin\BaseClasses.<Culture>.resx
The actual file names depend on your application’s chosen locales, e.g.:
...\<App Name>\bin\BaseClasses.es-PA.resx
...\<App Name>\bin\BaseClasses.en-US.resx
You can edit these text strings directly. We recommend using the Visual Studio XML editor. (Note: You should never modify files in the Base Classes library (folders) directly, since these files are automatically upgraded by Iron Speed Designer when installing new versions.)
ProjectTemplate.<UI Culture>.resx
When you create an application or select a new culture, Iron Speed Designer selects a file from the application resource library and places it into your application’s project folder:
...\<App Name>\bin\<App Name>.<UI Culture>.resx
The actual file names depend on your application’s chosen locales, e.g.:
...\<App Name>\bin\<App Name>.es-PA.resx
...\<App Name>\bin\<App Name>.en-US.resx
You can edit these text strings directly. We recommend using the Visual Studio XML editor. (Note: You should never modify files in the application resource library (folders) directly, since these files are automatically upgraded by Iron Speed Designer when installing new versions.)
Resource files at run-time
In some cases, your resource file or specific resource strings in the resource file may not be used at application run-time. When the .NET Framework is unable to locate your resource files or a particular resource string within a resource file, it uses the resource name by default because it does not have any other information. This can occur for a variety of reasons, including:
· The application is not configured for the proper language. If there is a mismatch between the culture setting in your application’s pages and the resource file you want to use, then the resource file will be ignored.
· The application resource file is not contained in the Bin directory of the application. You may also need to copy the resource file into the application’s Bin directory or let Iron Speed Designer copy it to the Bin directory during Build time.
Example: Internationalize table column headings (field names)
Step 1: Use the Application Wizard to add multiple languages for your application. This creates a resource file (RESX) for each selected language in your application’s App_GlobalResources folder, e.g.:
AcmeOMS.de.resx
AcmeOMS.en-US.resx
AcmeOMS.fr.resx
AcmeOMS.it.resx
AcmeOMS.resx
Step 2: In your application’s App_GlobalResources folder, open each resource file and add resource entries for the column headings, e.g.:
	Resource Key
	Value

	Txt:Customer
	Customer

	Txt:OrderID
	Order Number

The Resource Keys should be the same, regardless of language. However, the string values should be language specific.
Step 3: In Iron Speed Designer, open the page that will use these column heading strings. Then navigate to the table panel containing the column headings.
Step 4: In the Layout Editor, select the label control you wish to have a language-specific text string.
Step 5: In the Property Sheet, change the Text property to use the resource key you entered in your application’s resource files.
	Group
	Property
	Value

	Appearance
	Text
	{Txt:Customer}

Be sure to enclose the resource key in curly braces. This instructs Iron Speed Designer to emit code that retrieves the string from the resource file.
Step 6: Build and run your application.
Step 7: In your application, select the appropriate language from the Upper Tool Bar and your page will update to display the correct language-specific labels.

[bookmark: _Ref129515020][bookmark: _Toc414880235]Resource File Format
Resource files are straightforward XML files that follow a format defined by Microsoft and used by Iron Speed Designer and by your applications. An example ProjectTemplate.resx file is shown below.
<?xml version="1.0" encoding="utf-8"?>
<root>
	<data name="Language">
		<value>en-US</value>
	</data>

	<data name="val:ValueIsRequired">
		<value>{FieldName} value is required.</value>
	</data>

	<data name="val:InvalidValue">
		<value>The {FieldName} value you entered is invalid. It may be invalid for a number of reasons. You may have entered a value that is longer than what is allowed, the value may contain invalid characters or the value might be out of range of allowed values. Please review the value and correct it and submit the changes again.</value>
	</data>

	<data name="val:ValueTooLong">
		<value>Value for {FieldName} is too long</value>
	</data>
Each entry in the resource file has a Name and a Value. The Name is the name of the string resource, called a Resource Key. The value is the localized string to be used in your application.
Some validation messages, such as “field value” validation messages, are parameterized by name. You can localize (translate) the message text. However, do not translate or change the substitution parameters, e.g., {FieldName}, because your application uses these substitution parameters at run-time.
Resource keys have prefixes, called Resource Key Prefixes: "Txt" (for Text), "Val" (for Validation Message), and "Btn" (for Button). Their primary purpose is to distinguish keys from values when viewing and editing the string resource files.
	Resource Key Prefix
	Use

	Btn
	Button text.

	Err
	Error messages.

	Txt
	Dialog box titles and other general purpose text strings.

	Val
	Validation error messages.

The following caveats apply:
· Resource Keys are case sensitive. For example, Btn:Edit is acceptable but Btn:edit will not work.
· Resource Key Prefixes are case sensitive. For example, Btn:Edit is acceptable but btn:Edit will not work.
· Parameter names are case insensitive. For example, {TableName} and {TABLENAME} both will work.

[bookmark: _Ref129515154][bookmark: _Toc414880236]Editing Resource Files
You should only edit the resource’s value and leave the resource’s name alone. There is no need to add or remove rows from the resource file.
You should refrain from adding your own new string resources to the resource files provided or created by Iron Speed Designer. Iron Speed Designer applications do not provide a mechanism for retrieving these strings from the resource file, either at application generation time or at application run-time.
Resource files should be saved in UTF-8 format, so be sure to use an editor that supports saving in this format. This ensures that the character set you use will be manifested in the resulting text strings. Your particular text editor may default to an encoding format other than UTF-8 (e.g., BIG5), which is frequently the case for Asian-language editors. In this case, you may need to explicitly save your resource file in UTF-8. While the UTF-8 format can result in larger-sized resource files than other encoding formats, UTF-8 is the most popular encoding format for web applications and most applications support this format.
Resource Files and the Property Sheet
Some strings in the resource files can be edited directly in the page’s Property Sheet. If you change the text for a field in the Property Sheet, this text is saved in the properties file for the particular page. At this point, Iron Speed Designer will no longer look to the resource file for that field’s string. Instead, that field’s string will be taken from the page’s properties file, giving the properties file precedence over the string resource file.
Language Translation Reminder
When an application specifies a country, or uses a language not listed above, Iron Speed Designer makes a copy of the closest culture / language (English is the default). It remembers the original language and displays a reminder to translate the file if necessary.
After translating the file, including making minor adjustments to their specific country's dialect, set the "Language" property at the top of the file to the language indicated in the file name. For instance, after adjusting a Spanish translation for the Costa Rican variant, change “es-ES” to “es-CR” to match the file extension. You may also change the Translator fields to show the proper values.
Here is what the XML at the top of the .RESX file looks like before the change:
<data name="Language">
	<value>es-ES</value>
</data>
<data name="Translator:Name">
	<value>Frank Jones</value>
</data>
<data name="Translator:Company">
	<value>Your Company, Inc.</value>
</data>
Upgrading Iron Speed Designer
Please be aware that installing future versions of Iron Speed Designer may overwrite the application base class library with a more current version. Thus, you should make a copy of any modified source code files so you can re-apply the changes made to any new version you may install.

[bookmark: _Ref49794070][bookmark: _Toc49837655][bookmark: _Toc49837850][bookmark: _Toc53046020][bookmark: _Toc58845151][bookmark: _Toc67124709][bookmark: _Toc74465846][bookmark: _Toc74555079][bookmark: _Toc414880237]Enabling Language Support in Microsoft Windows
If you are not seeing all the correct language characters on your screen, or your dates and numbers are not displaying appropriately, you may need to change certain settings in your Microsoft Windows installation.
To do this, go to the Microsoft Windows Control Panel, Regional and Language Options, and then select the appropriate language, number, currency and date options. After restarting your system, you should be able see your application in its designated language and format.
	[image:]
	The Regional Options control panel dialog in Microsoft Windows 2000.

Regional and Language Options in Microsoft Windows apply only to the logged in user. You may need to also set the Regional and Language Options for your local system account under which the Microsoft IIS web server, ASP.NET, and other processes run.
To do this, open the Regional and Language Options from the Microsoft Windows Control Panel. On the "Regional Options" tab set the locale you wish to use. Press the Advanced tab if you wish to change any of the default formats for your locale. Then, check "Apply all settings to the current user account and to the default user profile".
[image: Setting the Default Locale under Windows2000]
Note: Please exit and restart Iron Speed Designer after making any changes in the Regional and Language Options dialog in Microsoft Windows. Iron Speed Designer must be restarted in order to detect any changes made in Microsoft Windows.
Mid-Eastern and East Asian Languages
You may need to enable Mid-Eastern and East Asian languages through Microsoft Windows. In the Control Panel, Regional and Language Options dialog, select “Install files for complex script and right-to-left languages” and “Install files for East Asian languages” as appropriate. You may need to do this in order for Microsoft SQL Server to properly display fields in certain languages.
[image:]
Enabling Language Support in Microsoft Internet Explorer
Viewing certain character sets, especially Asian and European character sets, require your browser to be set to Unicode (UTF-8) format. Be sure to set your browser accordingly.
[image:]
Most Web pages contain information that tells the browser what language encoding (the language and character set) to use. If the page does not include that information, and you have the Language Encoding Auto-Select feature on, Internet Explorer can usually determine the appropriate language encoding.
To turn Auto-Select on: On the View menu in Internet Explorer, point to Encoding, and then make sure Auto-Select has a check mark. If it doesn't, select it. If you are prompted to download language support components, click Download. If Auto-Select cannot determine the correct language encoding, and you know what language encoding it should be, you can manually select it.
To select the language encoding for a Web page: On the View menu, point to Encoding, point to More, and then click the appropriate language. If you are prompted to download language support components, click Download.
· If the Auto-Select feature or a specific language pack is not installed on your computer, Internet Explorer prompts you to download the files as needed.
· Adding languages does not guarantee that your computer has a font that can display Web pages in your preferred languages. To be prompted when fonts need to be added, on the Tools menu, click Internet Options, click the Advanced tab, and then select the Enable Install On Demand check box.
· You can add a Language Encoding button to your toolbar to make switching between languages quicker.
Displaying Non-UTF-8 Encoded Text in your Web Browser
If the text you are inserting text into your application (for insertion into the database) is NOT UTF-8 encoded, then it will be saved in your database in its original encoding format, not UTF-8. Similarly, if the text stored in your database is not UTF-8 encoded, then your application may not be able to properly display this text because your application pages are UTF-8 encoded.
You can generally fix this display problem by installing the appropriate language fonts for your web browser. This enables your web browser to display non-UTF-8 encoded text even though the web page was created with UTF-8 encoding.
For Internet Explorer, select Tools Internet Options... Languages... to add additional language fonts to your web browser.
[image:]

[bookmark: _Ref50455708][bookmark: _Toc53046021][bookmark: _Toc58845152][bookmark: _Toc67124710][bookmark: _Toc74465847][bookmark: _Toc74555080][bookmark: _Toc414880238]United States Phone Numbers, States and ZIP Codes
Iron Speed Designer creates specialized data display and validation code for appropriately designated field validation types, including:
· U.S. Phone Number
· U.S. State
· U.S. ZIP Code
At present, these field validation types only support U.S. formats and cannot be localized to other formats.

[bookmark: _Ref129523471][bookmark: _Ref129583237][bookmark: _Toc414880239]Creating a Multi-Lingual Application
Iron Speed Designer applications support multiple language translation files (RESX). If you selected this option in the Application Wizard, you must still provide a means for your application users to select which language (culture) they wish to use at run-time.
Iron Speed Designer provides a variety of mechanisms for setting the application culture. Before describing them, it is useful to understand how your application culture is set in your application.
How your application sets the culture
The application’s BasePage class sets application culture based on session variables and URL parameters. Either can be used depending on your programming requirements and style.
	Function
	Session Parameter
	URL Parameter

	Set the UI culture of the application
	AppCultureUI
	culutreui

	Set the application formatting
	AppCulture
	culture

The values assigned to these parameters must be valid culture names, such as “en-US”, “en-UK”. A list of culture names is available at this Microsoft website:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csvr2002/htm/cs_rp_catalogmanager_list_c.asp
The BasePage class sets the application culture for the application thread by setting these variables:
System.Threading.Thread.CurrentThread.CurrentUICulture
System.Threading.Thread.CurrentThread.CurrentCulture
The GetValueFromResourceFile method in the MiscUtils class of the BaseClasses reads the specific language resource file (RESX) based on value of System.Threading.Thread.CurrentThread.CurrentUICulture.
The SetPageCulture method in the BasePage class sets the cultures of the thread and is called in the Page_Init method of the BasePage class. This method can be overridden to implement a custom method of setting user culture.
Once the culture is set, it is applicable for the duration of the session. Note that the culture is set per application thread, so if a user has two separate browser windows, they could potentially have different cultures set.
If the user chooses a culture for which there is no language translation, then the default (English) translation is added and you must provide the language translation yourself. The default culture is always added to the application, and even if you remove it via the Application Wizard, it will be added to the application.
Both the Upper Tool Bar and the code customization read the names of available cultures from the “App_GlobalResources” folder.
Using the Upper Tool Bar to set Application Culture
Your application displays the languages you have chosen to include in a dropdown list box in the Upper Tool Bar. Application users can choose which language they want, and your application will set the application language accordingly. After selecting a language, your application automatically stores the last selected language in cookie so that next time you open application it will be set to this language.
The language dropdown list is located in Header.ascx.cs (.vb) and has a Text property configured according to the English name of the language, e.g., “German”, “Spanish”, etc. At run-time, your application attempts to retrieve the localized language name from the resource file (RESX) using the key:
Txt:<English Language Name>		(i.e. Txt:French, Txt:German, etc.)
If the resource value is present, it is used in the dropdown list in the Upper Tool Bar, allowing your application to show language-specific names, e.g., “Deutsch”, “Espanol”, etc.
Please note that selecting a language will not change your application’s culture. The application’s culture determines the currency symbol used, which cannot change because database values are presumed to be in a fixed currency. Moreover, since the culture does not change, the application will continue to format dates as specified in the default culture.
[image:]
[bookmark: _Ref129583315]Using URL Parameters to set Application Culture
You can also use the URL parameter to add a “Language” hyperlink to the page and set the link to redirect back to the same page with the URL parameters “culutreui” and “culture” set. Use the Property Sheet to set the redirection.

Here, the Redirect URL properties have been set for the three hyperlinks as follows:
	Language
	Redirect URL

	English
	ShowCategoriesTable.aspx?cultureui=EN-US

	German
	ShowCategoriesTable.aspx?cultureui=de-DE

	Italian
	ShowCategoriesTable.aspx?cultureui=it-IT

The browser in the above image shows how the culture was set to German by clicking on the German link.
[bookmark: _Ref129583319]Using a Code Customization to set Application Culture
There is a code customization that adds a drop down list to any page to set the user’s culture called “Add Dropdown List To Choose Language Of Application” in the “Multi-lingual Application” section of the Code Customization Wizard.
[bookmark: _Ref129583320]Reading Browser Language Settings to set Application Culture
The GetBrowserLanguages method in the BasePage class returns all the languages set for the client-side web browser. Override the SetPageCulture method in your page and call GetBrowserLanguages to retrieve the browser languages. Then, set the values of:
System.Threading.Thread.CurrentThread.CurrentUICulture
System.Threading.Thread.CurrentThread.CurrentCulture
using the first value in list of browser languages. GetBrowserLanguages returns languages in the order in which they are set in the browser.
The disadvantage of this approach is that application users in an uncontrolled environment like a web café may have web browsers set to languages not of their choosing, and there may be no way for the user to set the application culture of their choice.
[bookmark: _Ref129583322]Reading the User Language Preference from Database to set Application Culture
This method can be used with the Sign-In page. During sign–in, the user’s language preference can be read from the database, and both the “AppCultureUI” and “AppCulture” session variables can be set or the thread cultures could be set directly. In this case, the code customization “Store Extra Information at Sign-In Time” can be used to set these values.
[bookmark: _Ref129583327]Custom Coding Approaches for Setting Application Culture
You may implement custom approaches to choose the language preference and then override the SetPageCulture function in your page to set the culture by setting values for:
System.Threading.Thread.CurrentThread.CurrentUICulture
System.Threading.Thread.CurrentThread.CurrentCulture
This override needs to be in just one page of your application (default page recommended) and it will be set for the application thread.

[bookmark: _Toc413415248][bookmark: _Toc414880240][bookmark: _Toc411929904]Customizing Gallery Pages
The default configuration of the gallery page selects two fields in a single column. These are an image data type and a reasonable second field from the table. Both fields are linked to the show record page or foreign key table page depending on the settings in Application Generation Options. The selected fields may be changed or other fields added.
The header section is not populated with any content by default. If you want content in the header section, then the content and styles should be present in as many columns as the cell is repeating.
In the repeater section, fields are separated using
 tags to force each field on a separate line.
 [image:]
In the page total section, just like the header, the content and styles should be present in as many columns as the cell is repeating.
 [image:]

[bookmark: _Toc414880241]Customizing Quick Selector Pages
Although the Quick Selector table control looks similar to generic table controls, not all layout or code customizations for generic table controls are appropriate for the Quick Selector table control. A Quick Selector table control executes a query with a SELECT DISTINCT clause to get a list of unique row items to display. By default these items will be assigned to the text property of QuickSelectorItem using the Formula SelectorTableControl.GetQuickSelectorDisplayText.
Note, that if items to be selected are not primary keys of the table, no primary key will be included by default in the Quick Selector’s records. For example, if you have a list of Countries to select from, which is populated from the Customers table, no primary key will be included in the Quick Selector item. Such design ensures that you will get only unique countries in the list, while in the underlying table there might be thousands of records with the same country.
If the Quick Selector items are not primary keys of the table, then you may not use controls which require a primary key in the Quick Selector’s row. This includes controls such as images, row edit, delete and show buttons, any controls with pop-up such as large text fields or child panels. To allow the use of these controls you may also drag and drop a Primary Key field from the Toolbox. You may set the visible property for this field to False on the Property Sheet to hide it, but the Quick Selector results set will change to include every row of the underlying table.
It is possible to use a formula in the Quick Selector page in a similar way that it is used everywhere else with one important limitation: any database field included in the formula should be included in the query for the Quick Selector as well. So for example, if a QuickSelector has only EmployeeID in the query and you want a formula to use First and Last names, you must configure the data source to include thise fields.
Step 1: In the Property Sheet, open the TableControlQuery.
Step 2: In the Query Wizard, go to the “SELECT” step.
Step 3: Select “Manually select fields”.
Step 4: Include EmployeeID, FirstName, and LastName.
You can also populate Quick Selector pages using other database tables or views. For example, suppose you have a Quick Selector button that shows rows from the Products table. To make the Quick Selector display rows form from the Current Product List view, you must do the following:
Step 1: Select the Quick Selector button in the Layout Editor and specify the “Pop-up file path” property to be:
../Current-Product-List/ Current-Product-List-QuickSelector.aspx
Step 2: Set the Index field property to be “Current Product List.ProductId”.
Step 3: Specify the “Display text” property to be
=Current_Product_List.ProductName
The “Display text” formula sets the display text on each row on the Quick Selector page and the Quick Selector button text.
Once you make changes on a Quick Selector page, all Quick Selector buttons which redirect to this Quick Selector page will show you the new effect. If you only want certain Quick Selector buttons to be affected, you can duplicate the Quick Selector Page, change the copy according to your needs, and set the Quick Selector button’s “Pop-up path” property to be the new path.
You can change another control type to a Quick Selector via the “Control type” property in the Property Sheet. Do not forget to also specify the relative URL to the QuickSelector ASPX file in the Pop-up file path mentioned above.
[image:]
[bookmark: _Toc411929905]Resizing Quick Selector pages
To resize all quick selectors globally in the application, you should define the following CSS classes in Style.css which will override the classes in BaseStyles.css.
	CSS class name
	Description
	Default values
	Example of new values

	.QSSize
	Size of pop-up.
	height: 278px;
width: 300px;
	height: 478px;
width: 600px;

	.QSttc div
	Width of the quick selector cell content before truncation.
	width:290px;
	width:580px;

	.QSfooter
	Top position of the footer.
	top:240px;
	top:440px;

	.QSContainer .QSscrollRegion
	Height of the scroll region.
	height:200px;
	height:400px;

To resize individual quick selector page, define new CSS classes in Style.css as above. However, instead of override the existing CSS classes in BaseStyle.css, you give the CSS classes new names such as .QSSize1, .QSttc1 div, .QSfooter1, .QSscrollRegion1. Then you must modify the Quick Selector page to use the new classes.
Step 1: In the Property Sheet, set the “Pop-up CSS class” property to be the new class such as “QSSize1”:
[image:]
Step 2: Go inside the SelectorTableControl, select the cell with PaginationPanel and set the cell attribute to be class=QSfooter1:
[image:]
Step 3: Now go inside the SelectorPanel in the SelectorFields and select the cell with QuickSelectorItem. Select the cell attribute and change QSttc to QSttc1:
[image:]
Step 4: Finally go to the Panel level and change the class attribute to your new value QSScrollRegion1:
 [image:]
Note: When the text direction is set to Right-to-left and the HTML Editor is used on a page, the display position of the QuickSelector is not correct. You can resolve this issue by using a different editor from the available options, such as CKEditor.
[bookmark: _Mobile_Pages]
[bookmark: _Ref391558406][bookmark: _Toc411929906][bookmark: _Toc414880242]Configuring Modal Pop-up Pages
You can configure any page to open in a modal pop-up page instead of being redirected to the same window or open in a new browser window.
[image:]
This way of showing pages has the advantages of allowing you to keep the context of an action intact. For example, if you need to edit a record at the bottom of page 2 of your table, using a modal pop-up will not change pagination or position of the table.
You can configure any button having a redirect action to open the page in the modal pop-up. You can do that by modifying button actions or using the Batch Wizard.
Configuring Modal Pop-ups using the Redirect Action Wizard
Step 1: Select a button and in the Property Sheet click on Button Actions, Redirect:
[image:]
[image:]
Step 2: Now in the Redirect Action Wizard you can specify an action for your button:
[image:]
Step 3: To have a page open in a modal pop-up select “Navigate a specific URL within a modal pop-up”. With this option or “Navigate a specific URL within a new window” option selected you can specify a control on the underlying page (where the button is) to get updated when the pop-up window is closed. Of course that makes sense only if your pop-up page updates a record. For example if you open Edit record page for a record in a table you might want to specify the table to be updated to reflect changes made.
Step 4: On the next “Redirect URL” step you can configure URL parameters.
[image:]
In order to make pages more user-friendly, Iron Speed Designer includes new URL parameter “TabVisible=False” when you select “Navigate a specific URL within a modal pop-up” to hide tabs when page is opened in a modal pop-up. Also if you specify a control to update on the Action step, “SaveAndNewVisible=False” will be included and the Save and New button will not show up on the page opened in modal pop up. If you think the tabs or Save and New button are helpful, you are welcome to remove these URL parameters but note that there are some major limitations:
if you close the window or cancel from it after one or more clicks to Save and New without ever clicking Save, underlying control will not be updated, new records will not be reflected. An application user will need to manually (F5) refresh a page to see new records Control is updated only when Save button is clicked.
Another important limitation is that only last added record will be added to the dropdown list if it was selected to be updated so if several were added via Save and New button only last will show up in the list after Save was clicked.
Tabs might not fit pop-up window and could require vertical and horizontal scroll.
Configuring Modal Pop-up using Batch Wizard
The Batch Wizard allows you to quickly search through the whole application and change button behavior globally. Once you choose an action at Select step and proceed to the “Configure” step, you will see a list of controls that satisfy the search criteria. You can filter buttons by Folder name, Page name, Control name, redirect URL or button type.
[image:]
Note that only those controls which are eligible for the change are shown in the list. For example, if you select new action as “Open page in pop-up” action only those buttons which are presently configured to redirect or open page in new window will show up. Buttons that already have an action configured to open page in modal pop-up will not appear in the list. Also no buttons without redirect URL property will be shown as they are no eligible for such action (for example, export buttons will not show up).
Select the controls you wish to re-configure and click Finish to complete the operation.
[image:]
Hide BUTTON or Tab container
You can easily hide a BUTTON or tab container using the “Control visible” property in the Property Sheet.
By default, the SaveAndNewButton has a visible property, = URL(“SaveAndNewVisible”). The Tab Containers has a visible formula, = URL(“TabVisible”). As a result, when SaveAndNewVisible or TabVisible is passed as False through the URL parameter, the corresponding button or tab containers will be invisible.
[image:]

Configuring Master Pages
In addition to a default master page you can configure two additional master pages for modal pop-up and new window redirects. These master pages are used only when this page is shown in the modal pop-up or new window. By default Iron Speed Designer assigns the special Popup.master and Blank.master pages for this purpose. Popup.master has a special ‘Close’ button on the upper right corner.
[image:]
Configure appearance of the modal pop-up
To resize all modal pop-up globally in the application except Quick Selector pages, you need to define these CSS classes in Style.css which will override the classes in BaseStyles.css:
	CSS class name
	Description
	Default values
	Example of new values

	.QPageSize
	Size of pop-up.
	height: 500px;
width: 780px;
	height: 700px;
width: 1080px;

	.QSContainer.scrollRegion.pageButtonsContainer
	Top position of the footer. The default is.
	top:460px;
	top:660px;

	.QSContainer.scrollRegion
	Height of the scroll region.
	height: 428px;
width:785px;
	height: 628px;
width:1085px

To resize one particular pop-up page, you need to first duplicate Master Pages/Popup.master, locate QSContainer in the PageBody section of duplicated master page, right click any cell on Layout Editor and select Styles-Table to bring up dialog for table attributes. Change the class from QSContainer to QSContainer1.
[image:]
Now you need to change top position of the footer with buttons, i.e. replace QPPageButtonsContainer style. Select the pop-up page in the Application Explorer in Iron Speed Designer, navigate to the page level section where you can see “PageButtons”, select the page button cell and set the cell attribute to your new style (ex QPPageButtonsContainer1).
And finally you need to replace QPageSize style. Select Page properties for the pop-up page.
Replace QPageSize with your new style (ex. QPageSize1):
[image:]
Now you need to define your new styles in the Styles.css file and your job is done.
[bookmark: _Setting_the_Start][bookmark: _Toc411929945][bookmark: _Toc414880243][bookmark: _Ref137621911]Configuring Infinite Pagination
Infinite pagination is a pagination control where records are added to the current table control as the user scrolls down. Infinite pagination can be applied to Modern, Classic and Mobile pages as well as to pages inside modal popups and quick selector controls. Gallery pages and mobile report pages have Infinite Pagination set as the default pagination.
When a page having Infinite Pagination is sent as an email using the feature available in Property Sheet, only a static version of the page is sent. Therefore the emailed page will not contain Infinite Pagination.
There should be only one Infinite Pagination control per page. Infinite Pagination will not work properly on a page having multiple table controls containing Infinite Pagination.
The ‘Visible’ property of the pagination control, present in the Property Sheet, should be set to ‘True’.
For regular pages, smooth panel update property should be set to ‘True’.
In order to change the current pagination to Infinite Pagination, follow this procedure:
Step 1: Select the current pagination control on the page. Then click the ‘ASCX file path’ option in the Property Sheet.
 [image:]
[image:]
Step 2: When the property dialog box opens, click on the browse button.
Step 3: Select one of the following ASCX controls, located in the Shared folder of the current application, depending upon the current page type:
· InfinitePagination.ascx for Modern/Classic Regular Page
· InfinitePaginationMobile.ascx for Modern/Classic Mobile Page
[image:]
[image:]
[image:]
[image:]
Step 4: Rebuild the current page to apply Infinite Pagination.

[bookmark: _Ref112040219][bookmark: _Toc236733076][bookmark: _Toc413415053][bookmark: _Toc414880244]Creating Reusable ASCX Panels and Components
One of the most powerful features of Iron Speed Designer is the ability to create and use reusable panels and components. For example, a header, footer and menu panel can be included on every page of an application. Reusable panels allow the definition of the panel in one place and pages simply refer to these panels. Changes only need be made once to the panel and will be reflected on all pages that use the panel. This allows you to consolidate the most common aspects of your application into one location and reuse them as often as necessary.
Reusable panels are simply fragments of a page and are created as ASCX controls instead of ASPX pages. Just like a page, they are configured through the Property Sheet. Once created they are referred to by other pages and panels via the GEN:Use code generation tag.
Reusable panels can be either completely independent or they can be dependent on the page or panel that includes them. For example, the header panel typically is a completely independent panel containing a logo, and other images. However, while a reusable button panel specifies the layout, the page or panel incorporating the button specifies the actual button label, the action to take, and the destination URL. The immediate parent provides any additional information needed by the dependent panel.
Reusable panels can be nested as deeply as you like. For example, a reusable button panel might be included in the reusable Footer panel that is included on each page. There is no limitation on the number of levels of nesting. However it is not possible to nest a reusable panel within the same panel. For example, you cannot add a footer panel within the same footer panel; this will cause compilation errors due to the circular panel reference.
Reusable panels also provide flexibility in naming. The names of code generation tags used within a panel will not conflict with any names within the page or panel that uses them. The names must be unique within a page or panel, but not across multiple pages or panels.
[bookmark: _Ref48389594][bookmark: _Toc49837624][bookmark: _Toc49837820][bookmark: _Toc53045989][bookmark: _Toc58845120][bookmark: _Toc236733077]To create a reusable panel
Step 1: Place your reusable ASCX control file in a subfolder of your application such as \MyApp\MyASPXControls. Make sure the file has an .ASCX extension.
Step 2: In Iron Speed Designer, select View, Refresh to display this new file in the Application Explorer.
Step 3: In the Application Explorer, select the newly added file and select the top page-level panel.
Step 4: In the Property Sheet, change the “Page type” property to “Custom ASCX control”.
	Group
	Property
	Setting

	Page
	Page type
	Custom ASCX control

Step 5: Press OK to save.
Step 6: Build your application.
To use a reusable panel
To use a reusable ASCX panel on another page:
Step 1: Use the Application Explorer to open the page where you want to use the panel.
Step 2: In Layout Editor, drag an Include ASCX Component from the Toolbox onto the page at the location where you want the panel.
Step 3: IMPORTANT: Configure the newly added component via the Property Sheet:
	Group
	Property
	Setting

	Page
	Page type
	Custom ASCX control

	Control
	ASCX file path
	..\MyApp\MyASPXControls\MyControl.ascx

Step 4: IMPORTANT: Rebuild your application (Build, Rebuild All). This creates the associated code for the newly added control.
Your panel should now be displayed as part of the enclosing web page with the same look and feel as the rest of your application.
Example: Creating a reusable header panel
[bookmark: OLE_LINK1]A header is typically an independent reusable panel that can be included in every page created. As an example, here’s how to create the reusable header panel:
Step 1: Create a standard web page via the Application Wizard as you normally would any page.
Step 2: In the Application Explorer, select the newly added file and select the top page-level panel.
Step 3: In the Property Sheet, Page section change the “Page type” property to ‘Header ASCX control’.
	Group
	Property
	Setting

	Page
	Page type
	Header ASCX control

Step 4: Set the properties for various controls on the page as desired. For example, you might set a Logo tag’s URL property.
	Group
	Property
	Setting

	
	Control name
	Logo

	Appearance
	ImageUrl
	http://www.ironspeed.com/art/logo.gif
Any URL you wish.

The ASCX panel is now ready to be included in a page. To include this panel on a page:
Step 1: Using Application Explorer, open the page where you wish to add the ASCX panel.
Step 2: In Layout Editor, navigate to the page area where you wish to add the ASCX panel.
Step 3: Drag an Include ASCX Component from the Toolbox onto the page and select the newly added control.
Step 4: In the Property Sheet, set the ‘ASCX file path’ property to the newly created header panel file.
	Group
	Property
	Setting

	Control
	ASCX file path
	MyHeader.ascx

Step 5: Build and run the application and view the page.
[image:]

[bookmark: _Ref48389596][bookmark: _Toc49837626][bookmark: _Toc49837822][bookmark: _Toc53045991][bookmark: _Toc58845122][bookmark: _Toc236733079][bookmark: _Toc413415054][bookmark: _Toc414880245]Example: Creating Button Panels
Enhancing applications with standard buttons that do standard things is often a tedious and time-consuming task. Iron Speed Designer can greatly simplify, and largely automate, this mundane task. For example, Iron Speed Designer supports four types of buttons. The Push Button, Link Button and Image Buttons create standard HTML buttons based on the Button, <a href> and HTML tags. A fourth type of button supported by Iron Speed Designer is a button that is created using HTML layout. This button can be used by dragging an Include ASCX Component from the Toolbox onto your page.
You can create many different types of buttons using HTML layout and use them on your page. For example, you can create a Red button and a Green button and use them multiple times on a single page. The button panel file may contain the complete property settings for the button including the label text, the URL and the command to execute. By setting the button properties completely, the button actually becomes a specific button and not reusable to create multiple buttons with different labels, URLs and commands. To allow reusability, Iron Speed Designer supports the ability to set some properties of the button at the page or panel that incorporates the button.
To create a reusable button:
Step 1: Create a new ASCX control by right-clicking on any node on the Application Explorer. Rename this file to “RedButton.ascx”.
[image:]
Step 2: Create a Link button within the newly created ASCX file. Select the first cell on the Layout Editor. In the HTML Editor enter:
“GEN:LINKBUTTON Name=“Button”/>“
Step 3: Set these <table> style attributes in the Tag Attributes dialog (Right-click, Styles, Table…).
cellpadding : 3
cellspacing : 0
border : 1
bordercolorlight : #C0C0C0
bordercolordark : #808080
style : border-collpas:collapse
bgcolor : #808080
Step 4: Set these <td> style attributes in the Tag Attributes dialog (Right-click, Styles, Cell…).
color : #FFFFFF
font-family: Verdana
font-size: 10px
Font-weight: bold
text-decoration: none
text-align: center
padding-left: 3px
padding-right: 3px
Step 5: Set the Control Type property via the Property Sheet. However, do not set the Text, ImageUrl or Button Action properties for the Button control.
	Group
	Property
	Setting

	
	Control name
	Button

	Control
	Control type
	Button ASCX Panel

	Control
	Button actions
	Leave unset

	Appearance
	Text
	Leave unset

	Appearance
	ImageUrl
	Leave unset

Step 6: Build the ASCX control (Build, Build).
Your button control is ready to use. To include this panel on a page:
Step 1: Use Application Explorer to open the page where you wish to add the new button panel.
Step 2: In Layout Editor, select the page area where you wish to add the button panel.
Step 3: Drag an Include ASCX Component from the Toolbox onto your page in the Layout Editor.
Step 4: In the Property Sheet for the newly added Include ASCX Component, select the ASCX panel:
	Group
	Property
	Setting

	
	Control name
	Include

	Control
	ASCX file path
	RedButton.ascx

	Custom properties
	Button-CommandName
	Redirect

	Custom properties
	Button-Consumers
	Page

	Custom properties
	Button-Text
	My Button

	Custom properties
	Button-RedirectURL
	http://www.ironspeed.com

Step 5: Build and run the application and review the buttons displayed.
[image:]

[bookmark: _Toc49837665][bookmark: _Toc49837860][bookmark: _Ref52078917][bookmark: _Toc53046031][bookmark: _Toc58845162][bookmark: _Toc67126163][bookmark: _Toc74648994][bookmark: _Toc81199841][bookmark: _Ref81200080][bookmark: _Toc81718429][bookmark: _Toc137619720][bookmark: _Toc411929948][bookmark: _Toc412564367][bookmark: _Toc412567763][bookmark: _Toc414880246][bookmark: _Ref69212803][bookmark: _Ref69212804][bookmark: _Ref69212805][bookmark: _Ref74387519][bookmark: _Ref74387569][bookmark: _Ref74387585][bookmark: _Ref74387600][bookmark: _Toc74401577][bookmark: _Toc74456326][bookmark: _Ref63512036][bookmark: _Toc74648749][bookmark: _Toc81199839][bookmark: _Toc81718427][bookmark: _Toc137619716]Capturing the Enter Key in Application Pages
On most normal web pages, pressing the Enter key either has no effect or causes the browser to 'click' one of the buttons in the page, but the button clicked is often not the one that users would think is the 'correct' button.
Some pages contain special tags that define 'capture zones' for the Enter key. Each capture zone is associated with a specific button, and this button will be 'clicked' when the capture zone is activated. A capture zone is activated when it detects that the Enter key is pressed inside of it. The location of the key press is determined based upon which page element was highlighted (or last clicked) when the key was pressed. The one exception to this rule is that elements that normally respond to the Enter key directly do not activate capture zones if they are the source of the key press. The elements that do not activate capture zones are:
· Text area
· Select, i.e. Dropdown
· Input buttons, i.e. <input type=[Submit/Button/Image/Reset]
· Anchors, i.e. <a> tags.
When capture zones are nested, only the innermost zone is activated.
These page template files contain the following capture zones:
· Table Report pages have a capture zone around their data that is associated with the Table Report page's first button.
· Add Record, Edit Record, and Show Record areas have capture zones around their fields that are associated with the Record's first button (Save or Cancel).
· Page Size text boxes activate the button next to them.
· Search text boxes activate the button next to them.
· Table Report page filters activate the Table Report page's Filter button.
· Dialog Pages have a capture zone around their contents, which is associated with the Dialog Page's first button, e.g. the OK button for the Sign In page.
The capture zone tags are .NET script tags that are ignored by Iron Speed Designer itself. At run-time, these tags call code in the application classes to create the DHTML for the capture zones. Iron Speed Designer provides you with a capability to handle the pressing of the Enter key by the application user on any control or the entire page. You can designate the specific button that will receive an event when the enter key is pressed for a control. This control is provided by enclosing the control with a Begin Capture and End Capture block as shown in the example below for the Table Report page's Search text box and the capture zone around it from the Everest page style:
<%= Me.SystemUtils.GenerateEnterKeyCaptureBeginTag(Me.FindControl("SearchButton")) %>
		<GEN:SearchFilter name="SearchArea" />
<%= Me.SystemUtils.GenerateEnterKeyCaptureEndTag(Me.FindControl("SearchButton")) %></td>
	<td><GEN:Button name="SearchButton" /></td>
In the above example, the SearchFilter code generation tag results in a text box for the application user to enter search text. To begin the search process, the application user can press the search button using a mouse. Alternatively, the application user can simply press Enter. To let applications pass the Enter Key event, you can surround the search filter text box within a Begin and End capture block.
You can specify the control that will receive the event when the enter key is pressed as a parameter to the function. In the example below, the Me.FindControl function is first used to find the search button on this page. The Button code generation tag defines a button with the name of SearchButton. The begin capture function GenerateEnterKeyCaptureBeginTag can be called to designate the beginning of the capture block.
<%= Me.SystemUtils.GenerateEnterKeyCaptureBeginTag(Me.FindControl("SearchButton")) %>
To end the capture block, call the GenerateEnterKeyCaptureEndTag function using very similar syntax shown above.
<%= Me.SystemUtils.GenerateEnterKeyCaptureEndTag(Me.FindControl("SearchButton")) %>
Note that the SearchButton referred to by the capture block must exist within the same page, but is not required to be within the capture block.
Note also in certain instances it may be more appropriate to use FindControlRecursively() instead of FindControl().
Clicking ‘Enter’ displays the wrong page
You will find ‘Enter’ key capture zones in pages built with Iron Speed Designer:
<%= SystemUtils.GenerateEnterKeyCaptureBeginTag(FindControl("OrdersTable:OrdersSearchButton")) %>

<%= SystemUtils.GenerateEnterKeyCaptureEndTag(FindControl("OrdersTable:OrdersSearchButton")) %>
(OrdersTable:OrdersSearchButton is a control used for illustration in this example.)
Anything that appears between these two lines is the ‘Enter’ key capture area. If you press ‘Enter’ key in the area defined between these two tags then it is equivalent to clicking the OrdersSearchButton in this case.
You can change the ‘Enter’ key handling by moving the capture zones elsewhere in your page or eliminate them altogether if you don’t want any ‘Enter’ key handling.

[bookmark: _Ref258863244][bookmark: _Toc411929949][bookmark: _Toc412564368][bookmark: _Toc412567764][bookmark: _Toc414880247]Setting Focus in Application Pages
Iron Speed Designer applications have functionality to set focus to a certain control on initial page load and set the focus to a new added row in editable tables.
Important: if you use .NET Framework 3.5 the set focus functionality requires Service Pack1 to be installed to operate properly.
Every page calls SetFocusOnLoad on every load. It is declared overridable (virtual) and can be overridden on any page. It is located in:
..\<APP NAME>\Shared\BaseApplicationPage.cs (.vb)
It is called in the Section 1 of page’s code behind file, e.g.:
..\<APP NAME>\Customers\ShowCustomersTable.aspx.cs (.vb)
SetFocusOnLoad loads a script which is executed on initial load. You may pass control to this method to set focus on the initial load to this specific control. This script in turn calls the setFocus method defined in:
..\<APP NAME>\SetFocus.js
By default, pages set the focus to the first focusable element on the page. Focusable elements are typically text boxes or dropdown lists. However, your application will not set the focus to the FCKeditor control because of the asynchronous behavior of this control.
An application sets focus only to elements inside the page content area based on the default content placeholder names used by your application’s master page. This check is based on default content placeholder names. If you change the name of a content placeholder in the Application Generation Options dialog, you should modify the ApplicationWebForm.js file located in your application’s root folder, e.g.:
..\<APP NAME>\ ApplicationWebForm.js
By modifying this file, you can:
· Exclude dropdown lists from the focusable controls by changing the Fev_FocusOnDefaultElement function and uncommenting some JavaScript code.
· Allow setting focus to the FCKeditor control by modifying the Fev_FocusOnDefaultElement function.
· Change the name of the content placeholder in IsElementInContent function.
· Instructions for these operations are outlined in ApplicationWebForm.js.
Special code is created to set focus to the first focusable element of a newly added row in editable table panels. For web applications, this functionality is located in the SetFocusToAddedRow method, which is called from the DataBind method in the table control class in the Controls.cs (.vb) file is located in:
..\<APP NAME>\Customers\ShowCustomersTable.Controls.cs (.vb)
For web sites, the SetFocusToAddedRow is located in:
..\<APP NAME>\App_Code\Customers\ShowCustomersTable.Controls.cs (.vb)
Instructions for this are also in ApplicationWebForm.js.

[bookmark: _Toc411929953][bookmark: _Toc412564369][bookmark: _Toc412567765][bookmark: _Toc414880248]Using iFrames in Application Pages
IFrames are useful for simultaneously displaying the results (responses) of multiple HTTP requests in the same browser window. Use the HTML Editor to add IFrames and popup windows to your application pages.
However, please be aware of these technical issues:
· Using IFrames in any .NET page complicates post-backs because each Frame's document contains a separate HTML Form.
· Inter-frame interaction is possible on the client side using Javascript, but the .NET convention, which Iron Speed Designer follows, is to use server side code whenever possible.
· Inter-frame interaction is not possible on the server side because:
· HTTP requests from Frames are indistinguishable from regular Requests.
· Frame Requests are processed individually, often sequentially (but possibly simultaneously), and in possibly arbitrary order.
· Because of these limitations, using IFrames can affect the server side session history mechanism and cause buttons which redirect "Back" to behave in an undesired manner.
· A Request from a given frame can only affect another frame by emitting Javascript within its own Response to effect client side interaction, and / or by server side caching (assuming the affected Request is processed after the affecting Request) and special code within both pages.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.jpeg

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

