
156
[bookmark: _Toc38781184][bookmark: _Toc46318121][bookmark: _Toc46552479][bookmark: _Toc48382305][bookmark: _Toc49837461][bookmark: _Toc52951669][bookmark: _Toc73525757][bookmark: _Ref112834580][bookmark: _Ref112834605][bookmark: _Toc117417286][bookmark: _Toc117417318][bookmark: _Ref251752521][bookmark: _Toc414866245][bookmark: _GoBack]Part VII: The Application Code Model
Part VII: The Application Code Model
Code Customization Tutorial
Application Classes and Methods
Best Practices for Code Customization
Code methods
Where to add customizations?
What events to handle or methods to override?
Do Not Forget the IsPostBack Flag
Referencing Page Controls in Code
Referencing Data Access Functions in Code
Handling Post Back Events
Page code behind example
Record Control code example
Additional Page Lifecycle References
Customizing and Debugging Inside Iron Speed Base Classes
Customizing Application Security
Implementing Custom User Authentication
Example: Overriding Security at the Page Level
Example: Programmatically Accessing the Currently Logged-in User
Example: Access User Name and Password from Sign In Control
Example: Allow Only Active Users to Login
Example: Encrypting Passwords Before Saving to the Database
Example: Restrict Login after Incorrect Password Used
Sending Email from an Application
Send Password by Email
Emailing the Contents of a Page
If You Have Problems Sending Email...
PDF Report Customization
Customizing PDF Report Configuration Files
Text Substitution Parameters for Titles, Headers, Footers and Columns
PDF Report Alignment Configuration
PDF Report Language and Culture-Based Configuration
Adding, Deleting and Rearranging Columns in PDF Reports
Customizing PDF Report Code
Microsoft Word Report Customization
Customizing Microsoft Word Report Configuration Files
Text Substitution Parameters for Titles, Headers, Footers and Columns
Microsoft Word Report Alignment Configuration
Microsoft Word Report Language and Culture-Based Configuration
Customizing Microsoft Word Report Code
Export to Excel Customization
Customizing the AddColumn Method
Customizing the ExportToExcel Method
Crystal Reports Application Development and Deployment
Creating a Crystal Reports Report File
Adding a Crystal Report to Your Iron Speed Designer Application
Adding Crystal Reports References to Your Project
Opening Crystal Reports PDF Files in Separate Browser Windows
Deploying a Crystal Reports Application
Compilation Errors
Code Customization Examples
Access ASP.NET Controls in Code-Behind Classes
Access Session State Information in Applications
Access Variables in the Data Access Layer
Adding an ASP.NET DataGrid Control to a Web Page
Adding Custom Functions to Your Application
Applying a Special CSS Style Sheet on Selected Pages
Catch Exceptions Raised in Custom Stored Procedures and Triggers
Compare Control Values with CompareValidator
Create a Series of Wizard Pages to Add a Record
Creating a Custom Large List Selector
Customizing the Data Access Layer
Overriding the GetRecordValues Function
Overriding the InsertRecord Function
Customizing the Default Error Message
Disable ValidationSummary and JavaScript for a Page
Disable View State for a Page
Expanding / Collapsing Sections on a Page
Handling Button Events
Modify the RedirectURL Property of a Menu
Opening a Page in a New Browser Window
Redirect to a Page Based on Logged In User
Retrieve Records with Primary, Non-Primary, and Composite Keys
Setting a Field to NULL
Use Data Access Classes in Windows Forms Applications
Validate a Field in the Business Layer

[bookmark: _Toc412569538][bookmark: _Toc74648702][bookmark: _Ref114416918][bookmark: _Toc414866246]Code Customization Tutorial
Iron Speed Designer creates standard .NET web pages and code-behind files containing all of the code necessary to retrieve, display, validate and save the data from the database. Your application code is easily customizable; you can augment the code to perform additional actions or even replace sections of the code with your own custom code.
[image:]
Most pages in an Iron Speed Designer application are based on tables and views in your database. Views may be used the same as tables to create pages, keeping in mind that views may not have primary or foreign keys declared initially.
For each database table and view used, we create Business Layer and Data Access Layer code files. From these tables, we create the pages you select and for each page we create a layout file with an .ASPX extension, code-behind and control code files.
	Class
	Type
	Example Class Name
	Location

	Page
	Presentation layer
	Edit_Customers
	Page code-behind file

	Record control
	Presentation layer
	CustomersRecordControl
	Control code-behind file

	Table control
	Presentation layer
	CustomersTableControl
	Control code-behind file

	Table control row
	Presentation layer
	CustomersTableControlRow
	Control code-behind file

	Record
	Business layer
	CustomersRecord
	Business layer

	Table
	Business layer
	CustomersTable
	Business layer

[bookmark: _Ref109713342][image:]
[image:]
You can customize behavior of the record in the Business Layer which is discussed later.
[image:]
On this diagram Page content is wrapped in a master page which is located in the <app Name>\Master Pages folder.
The Master page includes these sections:
	Component
	File

	Page Header
	<app Name>\Header and Footer\Header.ascx

	Menu
	<appName>\Menu Panels\Menu.ascx

	Page Footer
	<app Name>\Header and Footer\Footer.ascx

	PageContent
	<app Name>\Customers\Edit-Customers.aspx

This page has both master record (Record Control) and details table (Table Control) panels. Table control includes a set of rows, each one of which is a Table Control Row (record) control.
[bookmark: _Toc412569539][bookmark: _Toc414866247]Application Classes and Methods
Iron Speed Designer uses inheritance to organize the code so your customizations are isolated and protected as the underlying code is regenerated to respond to your design changes.Your custom code will never be overwritten if placed in the appropriate region within the code file. Using the predefined structure of these classes, you can easily customize code without fear of it being overwritten by subsequent regeneration.
Page class
[image:]
	Key Methods
	Description

	LoadData
	LoadData is where you can modify the way data is read from the database, and how they are assigned to the controls.

	SaveData
	The SaveData method gives access to record upadate functionality. This method calls Save on all editable records and tables on the page.

	SaveButton
CancelButton
	Click handlers (SaveButton, CancelButton, etc.) are ideal place to modify buttons behavior and for example add new logic to the button, such as send email, redirect to another page or save something to session.

	GetImage
GetRecord<Field>Value
	GetImage and Get<RecordField>Value are used by Automatic Type Ahead and image popup functionality. They are called from the client side and you can customize them to change Automatic Type Ahead behavior for example.

	SetPageFocus
	SetPageFocus tries to set focus on the page to the proper control. It overrides default .NET behavior. Comment its content out if you want to let .NET do its job.

The page’s code-behind class is derived from the Microsoft .NET Framework’s page class. This class contains event handlers and methods that load the data from the database, display the data in user interface controls and save the updated data back into the database. The page class event handlers and methods call on some of the other classes to actually perform the specific task. Most code customization should be performed in these other classes.
Microsoft .NET Framework does not provide the flexibility of sub-classing of page classes where the controls are defined at both the base class and the sub-class. To provide the ability to customize application code, Iron Speed Designer creates a Base method for each of the methods. For example, Iron Speed Designer creates LoadData and LoadData_Base methods. LoadData calls LoadData_Base to perform the actual work. LoadData can be customized, while LoadData_Base should not be modified. LoadData can perform additional work before or after the call to LoadData_Base, or the entire call to LoadData_Base can be replaced with custom code in LoadData.
The EditCustomers class is derived from the BaseApplicationPage, BasePage and the .NET Page classes. The BaseApplicationPage class can be customized to make a common customization across all pages within an application. It is located in <App Name>\Shared\BaseApplicationPage.vb(cs) file. BasePage class is implemented in the BaseClasses.dll however you can customize it also. See instructions on how to customize BaseClasses
Check out a Sample EditCustomers code-behind including methods that can be customized and those that should not be. Note, not all methods are included and often parameters and closing tags are omitted. Important to remember – you should modify only methods in the Section 1 such as SetPageFocus, LoadData, SaveData but not generated code in Section 2 such as SaveData_Base LoadData_Base, etc.
Normally the methods in Section 1 call the methods in Section 2 to do the required work. You can customize this by executing code before calling the Base method, executing code after calling the Base method, or by copying and modifying the Base code and not calling the Base method. In the following example note calls to generated methods in Section 2 from customizable methods in Section 1
Record control class
[image:]
[image:]
	Key Methods
	Description

	LoadData
	Load the data from the database based on the query specified on the Query Wizard. This method calls the CreateWhereClause to compose the WHERE clause that will be used to read the data from the database.

	CreateWhereClause
	For Edit Record and Show Record pages, the CreateWhereClause retrieves the URL parameter and constructs a WHERE clause to read the record from the database.

	DataBind
	Binds the record read from the database to the user interface controls. Any formatting of the data such as the conversion of the stored date into a local culture specific date format is performed in this method. DataBind calls SetField for each field displayed on the web page to bind each individual field.

	Set<Field>
	Sets the user interface control from the database record. The Set function checks to make sure that the value is non-NULL, and then formats the field based on the data type and the current localized culture in effect for the web page and the application. If the value from the database is NULL, the default value from the database is used. Many of the formatting, display and default value options can be set in the Property Sheet instead of customizing the function.

	SaveData
	This method calls Validate to perform additional validation of the data, retrieves the data from the user interface controls, and then saves the data in the database. The transaction must be started prior to a call to this function, and must be committed by the caller. SaveData calls GetField for each control displayed on the web page to retrieve information from the user interface into a record that can be saved.

	Validate
	An initially empty Validate method is created in the Base class. You can override this method in the safe class to perform additional validation. In case of an error, an exception must be thrown with an appropriate message that can be reported to the end user.

	Get<Field>
	Gets the value from the user interface control into a record that will be saved by SaveData. A Get function is created for each of the user interface controls on the page. This method calls the Parse method to parse the value from the user interface control into the database record. The Parse method first performs validation to ensure the value can be recognized based on the type of the field (e.g., date), and then, if necessary, converts the text value to the data type of the field (e.g., integer). The Parse method may throw an exception if the value is not recognized. The exception must be handled by the caller of the SaveData method.

If a page contains a record control such as an Add or Edit Record page, a record control class provides the methods necessary to load the data for the specific record and bind its data to the user interface control. There are two record control classes created for each record on the page. A Base record control class contains all the code and is named by prefixing “Base” to the name of the record control (e.g., BaseCustomersRecordControl). An initially empty “safe” class is also created and is named the same as the name of the record control (e.g., CustomersRecordControl). Any methods defined in the base class can be overridden in the safe class to customize the functionality of the record control.
The CustomersRecordControl class is derived from the BaseCustomersRecordControl and BaseApplicationRecordControl classes. The BaseApplicationRecordControl class can be customized to make a common customization across all record controls within an application.
Example of the RecordControl class has only most important methods and events. Most of the content of those methods is omitted, but this example gives you an idea of how the code is organized and different methods are called.
Table control class
[image:]
[image:]
	Key Methods
	Description

	LoadData
	Load the data from the database based on the query specified on the Query Wizard. This method calls the CreateWhereClause to compose the WHERE clause that will be used to read the data from the database. CreateOrderBy is called to create the ORDER BY portion of the SELECT WHERE clause. Both CreateWhereClause and CreateOrderBy methods can be overridden in the safe class to add, modify or replace the code. The LoadData method sets the DataSource of the Table Control class. The DataSource is used later by the DataBind method to bind each of the rows in the table.

	CreateWhereClause
	The CreateWhereClause composes and returns a WHERE clause. The WHERE clause is composed of the static WHERE clause defined at page creation time combined with any filtering and searching criteria specified by the end user. You can add additional clauses by overriding the CreateWhereClause method.

	DataBind
	Binds the record read from the database to the user interface controls. This method loops through each row in the table, sets the DataSource of the row record control to the specific row from the DataSource of the table control, and then calls the DataBind method of the row record control. Any formatting of the data such as the conversion of the stored date into a local culture specific date format is performed in this method. Pagination controls are bound by calling BindPaginationControls method. The data for any drop-down filter controls is loaded and bound in this method by calling Populate methods for each filter.

	SaveData
	This method is applicable to editable tables and calls the SaveData method for each of the row record controls in the table. This method also deletes and rows if the user deleted the row. The row is deleted from the database when the Save button is clicked, not when the delete button is clicked. The transaction must be started prior to a call to this function, and must be committed by the caller. See the SaveData method for the Record Control described above.

	BindPaginationControls
	All of the pagination controls are bound in this method. Some controls are disabled if they are not applicable, such as the first page button if the user is already on the first page of the table.

	Populate<Field>Filter
	A PopulateFilter method is created for every dropdown filter. The name of the method is of the form Populate<Field>Filter. For example, if there is a Country filter, the method will be called PopulateCountryFilter. This method first calls the CreateWhereClause method for the specific filter (e.g., CreateWhereClause_CountryFilter), and then reads the data from the database, initializes the dropdown list with the values returned, and sets the selected value based on the current value specified in the database. By default, a maximum of 500 items are retrieved from the database. This can be changed by modifying the “Maximum generated items” property on the Property Sheet for the specific filter control.

	CreateWhereClause_<Field>Filter
	The CreateWhereClause_<Field>Filter method can be overridden to add, modify or replace the method. This is the best way to display a subset of items in the filters. Please note that the filter is a Display Foreign Key As field, the query may be run on the foreign key table and not on the table from where the data is being displayed. This is based on the Property Sheet setting that determines whether All Values or Only Result Set is selected for the filter settings. For example, if you are displayed the Order Details table containing a Product Id filter that is a foreign key to the Products table, then the Populate method will retrieve data from the Products table if the All Values option is selected. If the Only Result Set option is selected, then the Populate method will retrieve data from the Order Details table. Please take this into consideration when modifying the CreateWhereClause_FILTER methods so you can add the right WHERE clause for the applicable table.

	Sort_Click
	A Click handler is created for every column sort hyperlink in a table control. The name of the click handler is of the form COLUMNNAME_Click. For example, if there is a Country1 column header, the method will be called Country1_Click. This method calls the underlying ColumnSort method to set the CurrentSortOrder variable that will be used later by the CreateOrderBy method to set the sorting column and direction.

The CustomersTableControl class is derived from the BaseCustomersTableControl and BaseApplicationTableControl classes. The BaseApplicationTableControl class can be customized to make a common customization across all table controls within an application.
If a page contains a table control such as a Table Report page, the table control class provides the methods necessary to load, display, filter, search, sort, and paginate the table data. There are two table control classes created for each table on the page. A Base table control class contains all the code and is named by prefixing “Base” to the name of the table control (e.g., BaseCustomersTableControl). An initially empty “safe” class is also created and is named the same as the name of the table control (e.g., CustomersTableControl). Any methods defined in the base class can be overridden in the safe class to customize the functionality of the table control.
In addition to the two classes for each table control, there are two additional classes created that correspond to a row in the table.
Table Control Row class
[image:]
[image:]
	Key Methods
	Description

	Page_Load
	Calls Authorize to verify if user has access to the page, and then calls LoadData to load the data.

	LoadData
LoadData_Base
	LoadData calls the LoadData_Base method which in turn calls each of the record and table controls to actually load the data for the respective controls. The Base method (LoadData_Base) should not be modified, LoadData can be modified to perform additional tasks before or after the call to LoadData_Base or to simply replace the call.

	Button_Click
Button_Click_Base
	These methods handle the click event of a button and are named based on the name of the button. For example, a button called SaveButton will have a SaveButton_Click and a SaveButton_Click_Base method created as part of the page class. The SaveButton_Click calls the SaveButton_Button_Click method which in turn calls each of the record and table controls to actually save the data for the respective controls. The Button_Click_Base method starts, commits and ends a transaction and all updating of data occurs within this one transaction. Any errors including validation errors are reported by the lower level methods by throwing an exception. The exception is caught in Button_Click_Base and a Javascript alert is registered for display during the subsequent page load.

If a page contains a table control, then in addition to the table control classes, two additional classes are created. These classes correspond to a row in the table. The row classes are exactly the same as the Record Control classes defined above.
It is important to note that the row classes do not load the data from the database individually, but instead rely on their DataSource variable being set by the table control’s DataBind method.
A Row class is the same as a RecordControl class described earlier. It is derived from the BaseApplicationRecordControl class. The BaseApplicationRecordControl class can be customized to make a common customization across all record controls and rows within an application.
[bookmark: _Ref109713351][bookmark: _Ref137635251][bookmark: _Toc412569540][bookmark: _Toc414866248]Best Practices for Code Customization
While every customization and every need will be different, we have compiled a list of best practices that we recommend you follow. These best practices will help you add customizations at the most appropriate location for the vast majority of needs.
What is Code tabs and how they help to add customization?
Where to add customizations?
What events to handle or methods to override?
Do Not Forget the IsPostBack Flag
[bookmark: _Toc412569541][bookmark: _Toc414866249]Code methods
The Property Sheet, Code methods group shows the most commonly customized functions for the currently selected control in the Layout Editor. For data bound controls such as a textbox displayed on the Add or Edit page, the Code methods show the Set, Get and Validate functions. Similarly, selecting a button control shows its Click function, or selecting a dropdown shows its Dropdown function. Zooming out to the Table Control or the Record Control level will display functions such as CreateWhereClause,LoadData, DataBind and SaveData that are relevant to the selected controls.
 [image:]
The Code methods allow editing of the functions by simply modifying them within the code editor. Modification of the code in the code editor automatically places a copy of the function in Section 1, and changes the font (makes it bold) of method name to easily indicate that the function has been modified. At any point, clicking Restore will remove all the customizations and replace the function to its originally created code. Subsequent builds will also preserve the customizations, and the changes made will never be overwritten, unless explicitly restored.
Within the Code editor, the functions can be modified:
1. By a line or two of the code;
2. Changed to call the base function followed by additional lines of code; or
3. Changed in its entirety based on your needs.
All changes to the code will be preserved and never overwritten no matter how many times you rebuild your application. The code is well documented to ensure that it is easy to follow and change if the need arises.
Detailed documentation about the function can be viewed by clicking the Code Docs button. The Code Docs button displays customized documentation for the specific function being reviewed. The documentation describes the function, displays a calling hierarchy, shows how to customize and even displays a link to the underlying Microsoft .NET Framework control documentation when relevant. The documentation can also be opened in a separate window so the code and the documentation can be viewed side-by-side if necessary.
[bookmark: _Ref109720564][bookmark: _Toc412569542][bookmark: _Toc414866250]Where to add customizations?
In general you can handle events or override methods at the page class level, at the table or record control level or even at an individual field control level. For example, if you want to initialize the Country field to United States on a page, you can handle the PreRender event at the Page level, at the Record Control level or even the Country field level. So what is the best place to add this code customization?
We recommend that you add your code customizations at the Record Control class level. There are many reasons for this including:
· If you need a value from the underlying database record, you will have direct access to it by calling the GetRecord method or using the DataSource property.
· When you have a table control displayed on a page, each row of the page is created dynamically at run-time based on the number of rows being displayed. If you customize at the page or the table control level, you need to determine the exact row you are working on in your code customization. By doing it in the record control, you will always have access to the specific record you are interested in handling.
· The code customization will be the same whether you are working within a table or just displaying a single record.
[bookmark: _Ref109720567][bookmark: _Ref137636071][bookmark: _Toc412569543][bookmark: _Toc414866251]What events to handle or methods to override?
Some code customizations can be performed by handling the following events. For each event, please pay special attention to the recommended class for handling the event.
DataBind Method
If you want to initialize a value, format a value, compute a value, hide or display a control based on some criteria, or change the look and feel of a control, we recommend you override the DataBind method for the Record Control class to make these customizations. Remember to first call the MyBase.DataBind or base.DataBind to perform the underlying functions.
C#
public override void DataBind()
{
	base.DataBind();

	// Pre-initialize Title if blank
	if (this.ContactTitle.Text == "")
	{
		this.ContactTitle.Text = "Manager";
	}
}
Visual Basic .NET
Public Overrides Sub DataBind()
	MyBase.DataBind()

	' Pre-initialize Title if blank
	If Me.ContactTitle.Text = "" Then
		Me.ContactTitle.Text = "Manager"
	End If
End Sub
Validate Method
Two specific validators can be automatically created based on the values selected in the Property Sheet:
· RequiredFieldValidator: Selecting the Required property on the Property Sheet creates a Required Field Validator for Textbox, Checkbox and File Upload controls.
· MaxLengthValidator: Specifying a maximum length on the Property Sheet creates a MaxLengthValidator for a Textbox control.
In addition to these two validators, you can add your own custom validation logic very easily by overriding the Validate method at the Record Control class level. The Validate method is called from the SaveData method before the GetUIData method is called. Note that GetUIData retrieves the data from the user interface controls and converts it into the internal format required for saving. For example, a date specified as a text string “12-1-2006” will be converted to a Date object with the appropriate month, day and year values.
To validate fields from the user interface controls, use their user interface controls to validate the data. Validation errors must be grouped together and an exception thrown to abort the saving of data.
C#:
public override void Validate()
{
	base.Validate();

	// Additional Validation
	if (this.State.Text != "CA")
	{
		throw new Exception("State must be CA (California).");
	}
}
Visual Basic .NET:
Public Overrides Sub Validate()
	MyBase.Validate()

	' Additional Validation
	If Me.State.Text <> "CA" Then
		Throw New Exception("State must be CA (California).")
	End If
End Sub
GetUIData Method
If you want to make changes to the values before they are saved, we recommend you override the GetUIData method at the Record Control class level. The GetUIData method is called from within SaveData and retrieves all of the values from the user interface controls prior to the data being saved in the database. You can even set fields that are not displayed to the user, such as audit control fields.
C#:
public override void GetUIData()
{
	base.GetUIData();

	// Set additional field values here
	this.DataSource.LastUpdateDate = DateTime.Now();
}
Visual Basic .NET:
Public Overrides Sub GetUIData()
	MyBase.GetUIData()

	' Set additional field values here
	Me.DataSource.LastUpdateDate = DateTime.Now()
End Sub
CommitTransaction Method
If you want to access the Id of the record or send an email after the record is saved, we recommend you override the CommitTransaction method at the page class level. The CommitTransaction is defined in the BasePage class and calls DBUtils.CommitTransaction. If you override the CommitTransaction method, make sure to call the base CommitTransaction.
C#:
public override void CommitTransaction(object sender)
{
	// Call the base CommitTransaction
	base.CommitTransaction(sender);

	// Use the Me.CustomersRecordControl.GetRecord() to retrieve the record that was just updated.
	CustomersRecord myRecord;
	myRecord = this.CustomersRecordControl.GetRecord();

	// Send a confirmation email with the CustomerId.
	try
	{
		BaseClasses.Utils.MailSender email = new BaseClasses.Utils.MailSender();
		email.AddFrom("fromAddress@company.com");
		email.AddTo("toAddress@company.com");
		email.AddBCC("bccAddress@company.com");
		email.SetSubject("Confirmation");
		email.SetContent("Thank you for your request. Your Customer Id is: " + myRecord.CustomerID);
		email.SendMessage();

	}
	catch (System.Exception ex)
	{
		// Report the error message to the user.
		Utils.RegisterJScriptAlert(this, "UNIQUE_SCRIPTKEY", "Could not send an email. Error was: " + ex.Message);
	}
}
Visual Basic .NET:
Public Overrides Sub CommitTransaction(ByVal sender As Object)
	' Call the base CommitTransaction
	MyBase.CommitTransaction(sender)

	' Use the Me.CustomersRecordControl.GetRecord() to retrieve the record that was just updated.
	Dim myRecord As CustomersRecord
	myRecord = Me.CustomersRecordControl.GetRecord()

	' Send a confirmation email with the CustomerId.
	Try
		Dim email As New BaseClasses.Utils.MailSender
		email.AddFrom("fromAddress@company.com")
		email.AddTo("toAddress@company.com")
		email.AddBCC("bccAddress@company.com")
		email.SetSubject("Confirmation")
		email.SetContent("Thank you for your request. Your Customer Id is: " & myRecord.CustomerID)
		email.SendMessage()

	Catch ex As System.Exception
		' Report the error message to the user.
		Utils.RegisterJScriptAlert(Me, "UNIQUE_SCRIPTKEY", "Could not send an email. Error was: " & ex.Message)
	End Try
End Sub
Redirect Method
If you want to modify the URL before redirection, we recommend you override the CommitTransaction method (described above) at the Page class level and redirect after the commit. The SaveButton_Click method calls the SaveButton_Click_Base method on the page class to save and commit the database records. Once the save and commit happens, the SaveButton_Click_Base redirects to the URL specified in the Property Sheet. As such, you cannot add code after the call to the SaveButton_Click_Base method in SaveButton_Click because once the redirect happens, control will not return back to the SaveButton_Click method.
C#:
public void SaveButton_Click(object sender, EventArgs args)
{
	SaveButton_Click_Base(sender, args);
	// Code below will never get executed since SaveButton_Click_Base will
	// redirect to another page. To customize, either replace SaveButton_Click_Base
	// functionality here, or override CommitTransaction.
}
Visual Studio .NET:
Public Sub SaveButton_Click(ByVal sender As Object, ByVal args As EventArgs)
	SaveButton_Click_Base(sender, args)
	' Code below will never get executed since SaveButton_Click_Base will
	' redirect to another page. To customize, either replace SaveButton_Click_Base
	' functionality here, or override CommitTransaction.
End Sub
CreateWhereClause Method
If you want to modify the query before it is executed, the best place to do it is by overriding the CreateWhereClause method at the Table Control level for Table Report pages, and the CreateWhereClause method at the Record Control class level for the Add, Edit, and Show Record pages. Please note that CreateWhereClause is not available at the Page level since each table and record control has its own query. You can override the CreateWhereClause and add your own WHERE clause.
C#:
protected override BaseClasses.Data.WhereClause CreateWhereClause()
{
	WhereClause wc;

	wc = base.CreateWhereClause();

	if (IsNothing(wc))
	{
		// Get a blank WHERE clause if the base function returned null.
		wc = new WhereClause();
	}

	wc.iAND(CustomersTable.City, Starts_With, "Mountain");
}
Visual Basic .NET:
Protected Overrides Function CreateWhereClause() As BaseClasses.Data.WhereClause
	Dim wc As WhereClause

	wc = MyBase.CreateWhereClause()

	If IsNothing(wc) Then
		' Get a blank WHERE clause if the base function returned null.
		wc = New WhereClause
	End If

	wc.iAND(CustomersTable.City, Starts_With, "Mountain")
End Function
The CreateWhereClause method creates a WhereClause object that contains clauses joined together using AND, OR and NOT operators. The default CreateWhereClause created by Iron Speed Designer combines three different types of clauses to compose the entire WHERE clause for the query.
Static Clause: The static clause defined at design time by the developer. Note that the static clause may contain multiple clauses including clauses that support role-based security and custom function calls.
Filter Clause(s): The static clause is ANDed with one or more filter settings such as from a dropdown list or date filter textbox. For dropdown list boxes, an Equals comparison operator is used. For textbox filters, you can specify the operator such as greater-than, less-than, etc.
Search Clause: This entire clause is ANDed again with a search clause that compares the search string with the various search fields. The search clause is composed of a series of OR clauses that checks whether any of the search fields contain the text value entered in the search text box. You can configure the search fields and the operator it uses (default is Contains) via the Query Wizard in the Data Sources tab.
In pseudo-code, this clause looks like:
[Psuedo-code]
	StaticClause AND
	FilterField1 = SelectedValue1 AND
	FilterField2 = SelectedValue2 AND
	...more filter clauses... AND
	(SearchField1 Contains SearchText OR
	SearchField2 Contains SearchText OR ...)
The CreateWhereClause must return a WhereClause object. One of the main reasons Iron Speed Designer uses a WhereClause object instead of a Where string is to insulate you from knowing the syntax based on the specific database product you are using. Oracle, Microsoft SQL Server, MySQL and Microsoft Access each have a slightly different syntax for the SQL they use. Another reason to use the WhereClause is to specify whether a clause compares the raw value or the display foreign key value. This is described below.
You can override the CreateWhereClause in the derived class such as ProductsRecordControl. You can either call the base CreateWhereClause and add your own clauses to it, or completely replace the call.
The iAND and iOR take three required parameters and up to two optional arguments. It is important to understand the two optional arguments since they provide finer control over the WHERE clause.
Column: The column object is the first parameter to iAND and iOR. The column object is used to determine the actual column name. Sometimes the column name may contain spaces and other characters not easily specified in code, so by passing the column object, the WhereClause can determine and use the correct name. The format of the first parameter is typically TableTable.Field. For example if you have a field called FirstName in a table called Customers, the column object can be specified by using CustomersTable.FirstName. If a View or a Query is used, the suffix is changed from Table to View or Query respectively. For example, the FirstName field in vwActiveCustomers view would be specified as vwActiveCustomersView.FirstName.
Operator: The operator used by the WHERE clause. Operator can be one of the following:
· Contains
· Ends_With
· EqualsTo
· Greater_Than
· Greater_Than_Or_Equal
· Less_Than
· Less_Than_Or_Equal
· Not_Contains
· Not_Ends_With
· Not_Equals
· Not_Starts_With
· Starts_With
Value: The value is always specified as a string. Date and other objects must be converted to a string appropriately.
(Optional) ExpandForeignKey: If the Column or Field is a foreign key field, then sometimes it is convenient to pass the Display Foreign Key As (DFKA) value instead of the Id of the foreign key. For example, if there is a CustomerId field in the Orders table, you can create a clause to compare Orders.CustomerId = "3" or Orders.CustomerId = "Tom Jones".
The ExpandForeignKey parameter must be True if using the DFKA value such as “Tom Jones” in the above example. If the ExpandForeignKey is True, the SELECT statement will contain a JOIN with the foreign key table and the actual WHERE clause will compare the DFKA field with the value. For example:
SELECT * FROM Orders, Customers
WHERE Orders.CustomerID = Customers.CustomersID AND
Customers.Name = "Tom Jones"
If ExpandForeignKey is FALSE, then the SELECT statement created is a simple statement on a single table as shown below:
SELECT * FROM Orders WHERE Orders.CustomerID = "3"
By default, all static clauses specified on the Query Wizard will expand the foreign key (set to True). By default all filter clauses based on the end-user filter selection will not expand the foreign key (set to False) since in most cases we will have the Id values available in the dropdown
(Optional) IsCaseSensitive: If the IsCaseSensitive parameter is True, the comparison is case sensitive. For the Search filter, this setting can be specified via the Query Wizard (Data Sources tab) or the Property Sheet. For the static search filter clause, the IsCaseSensitive is set to False, while the parameter is set to True for a dynamic filter dropdown control.
To add parenthesis in a WHERE clause, you can simply create another new WHERE clause and AND or OR it with the earlier clause. The pseudo-code below shows you how to specify the following clause:
A AND B AND (C OR D)
You can do the following:
C#:
WhereClause wc1 = new WhereClause();
wc1.iAND(A);
wc1.iAND(B);

// Create OR portion of the clause
WhereClause wc2 = new WhereClause();
wc2.iOR(C);
wc2.iOR(D);

// AND the OR portion of the clause.
wc1.iAND(wc2);
Visual Basic .NET:
Dim wc1 As WhereClause = New WhereClause
wc1.iAND(A)
wc1.iAND(B)

' Create OR portion of the clause
Dim wc2 As WhereClause = New WhereClause
wc2.iOR(C)
wc2.iOR(D)

' AND the OR portion of the clause.
wc1.iAND(wc2)
PopulateFilter Method
If you want to pre-initialize a filter with a URL, cookie, or session value, the best place to do this is to override the PopulateFilter method for the specific field filter at the Table Control class. You can call the base method and then set the current value. You must also override the CreateWhereClause method to add the initial setting of the filter to the WHERE clause. You can also customize the WHERE clause used by the Populate Filter to limit the type of records retrieved, such as only Active customers. For additional customization, you can even replace the entire PopulateFilter method with your own method.
C#:
protected override WhereClause CreateWhereClause()
{
	// Call the MyBase.CreateWhereClause()
	WhereClause wc = base.CreateWhereClause();

	// If MyBase.CreateWhereClause() returns nothing then create a new
	// instance of WhereClause
	if ((wc == null))
	{
		wc = new WhereClause();
	}

	// Add a WHERE clause based on the querystring
	string country = this.Page.Request.QueryString("Country");
	if (!this.Page.IsPostBack && country != "")
	{
		wc.iAND(CustomersTable.Country, EqualsTo, country);
	}
	return wc;
}

// ---
protected override void PopulateCityFilter(string selectedValue, int maxItems)
{
	string country = this.Page.Request.QueryString("Country");

	// The selected value only will be set when the page loads for the first time.
	if (!this.Page.IsPostBack && country != "")
	{
		base.PopulateCityFilter(country, maxItems);
	}
	else
	{
		base.PopulateCityFilter(selectedValue, maxItems);
	}
}
Visual Basic .NET:
Protected Overrides Function CreateWhereClause() As WhereClause
	 ' Call the MyBase.CreateWhereClause()
	Dim wc As WhereClause = MyBase.CreateWhereClause()

	 ' If MyBase.CreateWhereClause() returns nothing then create a new
	 ' instance of WhereClause
	If (IsNothing(wc)) Then
		wc = New WhereClause
	End If

	' Add a WHERE clause based on the querystring
	Dim country As String = Me.Page.Request.QueryString("Country")
	If Not (Me.Page.IsPostBack) AndAlso country <> "" Then
		wc.iAND(CustomersTable.Country, EqualsTo, country)
	End If

	Return wc
End Function

‘ ---
Protected Overrides Sub PopulateCountryFilter(ByVal selectedValue As String, ByVal maxItems As Integer)

		Dim country As String = Me.Page.Request.QueryString("Country")

	' The selected value only will be set when the page loads for the first time.
	If Not (Me.Page.IsPostBack) AndAlso country <> "" Then
		MyBase.PopulateCountryFilter(country, maxItems)
	Else
		MyBase.PopulateCountryFilter(selectedValue, maxItems)
	End If
End Sub
[bookmark: _Ref109720568][bookmark: _Toc412569544][bookmark: _Toc414866252]Do Not Forget the IsPostBack Flag
By far the most common mistake made by .NET developers is to ignore the IsPostBack flag when handling an event or overriding a method. Note that each method and event handler will be executed at least twice, once when the page is being displayed and once when the user presses a button to save or go to another page. If you set AutoPostBack on a field to handle a TextChanged or SelectedItemChanged event, then each of the event handlers will be executed three or more times. When you add custom logic, make sure you check for the IsPostBack flag to decide whether to execute your code the first time the page is displayed, or only during a postback such as a button click or always.
C#:
if (!this.Page.IsPostBack)
{
	// This code executes when the page is first loaded.
}
else
{
	// This code executes during a button click or other postback.
}
// This code executes in all cases.
Visual Basic .NET:
If Not (Me.Page.IsPostBack) Then
	' This code executes when the page is first loaded.
Else
	' This code executes during a button click or other postback.
End If
' This code executes in all cases.
[bookmark: _Page_code_behind][bookmark: _Toc412569545][bookmark: _Toc414866253]Referencing Page Controls in Code
The user interface controls defined on the page can be accessed easily within each of the page, table control and record control classes in the code-behind or the controls file. Please note that user interface controls within a table control are initialized and defined when data is loaded into the table control since the number of rows displayed is determined by the result set returned by the query. As such we recommend that you make most of your code customizations at the Record Control class level since this class is available both when displaying a single record on a page as well as for each row within a table.
Page Class
You can access any user interface control from the page class except the controls that are repeated for each row in a table. To access the controls from the page, you simply specify the name of the control that is used in your web page. For example, if you have an Add Customer page, you may have a field label called CompanyNameLabel and a field value text box called CompanyName. To access this control, you can:
C#:
this.CompanyName
this.CompanyName.Text 	// to access the text entered by the user
Visual Basic .NET:
Me.CompanyName
Me.CompanyName.Text ' to access the text entered by the user
If you are displaying an Add, Edit or Show Record page, you will have a record control on the page. The record control corresponds to the record control class in the page’s code-behind file. If the page is a Table Report page, you will have a table control on the page and a record control for each row in the table. Both the table control and the record control will have corresponding classes in the page’s code-behind file. You can access the record and table controls within the page as follows:
C#:
this.CustomersRecordControl 	// to access the record control
// to access the company name within the
// record control
this.CustomersRecordControl.CompanyName
this.CustomersTableControl 	// to access the table control
Visual Basic .NET:
Me.CustomersRecordControl ' to access the record control
' to access the company name within the
' record control
Me.CustomersRecordControl.CompanyName
Me.CustomersTableControl ' to access the table control
Table Control Class
The table control class corresponds to the table control on the page. You can directly access all of the controls within the table except the rows of a table. To access the rows of a table, you can either override or handle events at the record control class level, or use functions such as GetRecordControls or GetSelectedRecordControls to get an array list that can loop through to get an individual row. To access the first (or only) selected row, use GetSelectedRecordControl function. The search, filter, pagination and column sorting controls can be accessed directly from the table control class.
The following example is for a button placed on the button bar of a table control that sets the Discontinued flag on all selected rows of the table control. The function calls GetSelectedRecordControls to retrieve the list of all selected rows. For each of the rows (TableControlRow objects), we use the RecordUniqueId to retrieve the database record. The database record is retrieved using the data access layer function GetRecord on the data access layer Table class (not the TableControl user interface class). The second argument passed to GetRecord is True to retrieve an updateable record. The Discontinued flag is modified and the Save function is called to save the record in the database. The entire For loop is enclosed in a Start, Commit and End Transaction block to ensure that all of the records are committed at the same time. Finally, the DataChanged variable is set to True so that the PreRender method on the table control refreshes the page with the latest settings from the database.
C#:
public override void MarkDiscontinued_Click(object sender, ImageClickEventArgs args)
{
	ProductsTableControlRow rc;

	try {
		DbUtils.StartTransaction();

		// Get all of the selected record controls.
		// Record controls are UI controls.
		foreach (rc in this.GetSelectedRecordControls()) {
			ProductsRecord rec;

			// Using the RecordUniqueId, read the Product record
			// from the database.
			// Use True as the second argument to make sure you
			// get a Writable record.
			rec = ProductsTable.GetRecord(rc.RecordUniqueId, true);
			if (rec != null) {
				// Mark as Discontinued
				rec.Discontinued = true;
				rec.Save();
			}
		}

		DbUtils.CommitTransaction();
	}
	catch (Exception ex) {

		Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);
	}
	finally {
		DbUtils.EndTransaction();
	}

	// Mark the data as changed so the data is refreshed
	this.DataChanged = true;
}
Visual Basic .NET:
Public Overrides Sub MarkDiscontinued_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)
	Dim rc As ProductsTableControlRow

	Try
		DbUtils.StartTransaction()

		' Get all of the selected record controls.
		' Record controls are UI controls.
		For Each rc In Me.GetSelectedRecordControls()
			Dim rec As ProductsRecord

			' Using the RecordUniqueId, read the Product record
			' from the database.
			' Use True as the second argument to make sure you
			' get a Writable record.
			rec = ProductsTable.GetRecord(rc.RecordUniqueId, True)
			If Not (IsNothing(rec)) Then
				' Mark as Discontinued
				rec.Discontinued = True
				rec.Save()
			End If
		Next

		DbUtils.CommitTransaction()

	Catch ex As Exception
		Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)

	Finally
		DbUtils.EndTransaction()
	End Try

	' Mark the data as changed so the data is refreshed
	Me.DataChanged = True
End Sub
To retrieve all the currently displayed rows instead of only the selected rows, use the GetRecordControls function. To retrieve the first (or only) selected row, use the GetSelectedRecordControl function.
All controls within the row can be accessed directly using the name of the control. In the example above, if the row contained a ProductName control, it can accessed directly by using rc.ProductName. If the control is a textbox, all properties of the textbox can be accessed directly as well, such as rc.ProductName.Text.
Record Control Class
We recommend most of the code customizations to be made at the record control class. The record control class corresponds to the record being displayed on the page. If there is a table displayed on the page, the record control class corresponds to each row within a table. The customizations will be the same regardless of whether the record control class corresponds to a single record control or to a row within a table.
You can access all of the fields within a record control including column values as shown below:
C#:
this.CompanyName
this.CompanyName.Text 	// to access the text entered by the user
Visual Basic .NET:
Me.CompanyName
Me.CompanyName.Text ' to access the text entered by the user
[bookmark: _Ref137634955][bookmark: _Ref137635245][bookmark: _Toc412569546][bookmark: _Toc414866254]Referencing Data Access Functions in Code
Iron Speed Designer creates two classes for each table in your database.
The Record classes represent a record from the database. Some of the record classes specify an actual physical record in the database while others correspond to a virtual record – the result of a join between tables. A “Record” suffix is added to the name of the table to get the name of the class. For example, if you have a Customers table in your database, the class will be called CustomersRecord. The record class is different from the record control class described elsewhere. A record class corresponds to a database record, while a record control class corresponds to a user interface control that contains other fields that display or edit data.
The Table class is one of the most important classes used in Iron Speed Designer applications. This class is created for each table in your application to provide the methods necessary to retrieve a group of records based on a query. A “Table” suffix is added to the name of the table to get the name of the class. For example, if you have a Customers table in your database, the class will be called CustomersTable. A “View” or a “Query” suffix is added to the name if the class is for a view or query respectively.
To read data from the database you can use the GetRecords function on the Table class. There are a number of variations of the GetRecords functions that either take a string-based WHERE clause or an object that specifies the clause. Each of the GetRecords functions can take optional arguments that specify the order by clause, the number of records to retrieve, and the starting page number.
GetRecords with a WHERE clause string
The following examples show how to use the GetRecords functions with a string based WHERE clause. This case is typically used to make a call to GetRecords when there is only one WHERE clause that is not combined with another clause using an AND or OR operator. While the clauses can be combined in a string, it is better to use a WhereClause object defined later in this section.
C#:
CustomersRecord[] myRecords;

myRecords = CustomersTable.GetRecords("Country = USA");
if (myRecords != null)
{
	foreach (CustomersRecord rec in myRecords)
	{
		// To access a field in the record, simply specify
		// rec.<FieldName>
		String s = "Company: " + rec.CompanyName;
	}
}
Visual Basic .NET:
Dim myRecords As CustomersRecord()
myRecords = CustomersTable.GetRecords("Country = USA")

If Not (IsNothing(myRecords)) Then
	For Each rec In myRecords
		 ' To access a field in the record, simply specify
		' rec.<FieldName>
		Dim s As String = "Company: " & rec.CompanyName
	Next
End If
The GetRecords function takes a WHERE clause and retrieves all records that meet that criteria. Please note that the number of records returned is dependent on the number of records in the database. If you want to limit the number of records, you can pass additional parameters to the GetRecords function. The following code will return the third set of 50 records.
C#:
CustomersRecord[] myRecords;
myRecords = CustomersTable.GetRecords("Country = USA", null, 3, 50);

if (myRecords != null)
{
	foreach (CustomersRecord rec in myRecords)
	{
		// To access a field in the record, simply specify
		// rec.<FieldName>
		String s = "Company: " + rec.CompanyName;
	}
}
Visual Basic .NET:
Dim myRecords As CustomersRecord()
myRecords = CustomersTable.GetRecords("Country = USA", Nothing, 3, 50)

If Not (IsNothing(myRecords)) Then
	For Each rec In myRecords
		' To access a field in the record, simply specify
		' rec.<FieldName>
		Dim s As String = "Company: " & rec.CompanyName
	Next
End If
The above examples demonstrate how you can read a set of records from the database. If you want to access the records that are being displayed on a page, you would need to call the GetRecords() function on the Table Control class within the page.
In addition to the above example, you can also use the GetRecord function to read a single record from the database. GetRecord takes a WHERE clause similar to GetRecords and will return the first record that matches the query.
GetRecords with a WhereClause object
The following examples show how to use the GetRecords functions with a WhereClause object. This case is typically used to make a call to GetRecords when there are more than one WHERE clauses that must be combined with AND or OR operators. The CreateWhereClause method created by Iron Speed Designer uses this method to retrieve data from the database.
You can defined a WhereClause object and then call the iAND and iOR methods to define clauses. The iAND and iOR methods take a field name, an operator and a value. The field name may contain spaces or other characters, so it is safer to use the name as provided by the database schema. The database schema field name can be specified using the Table class followed by the column name such as CustomersTable.CompanyName.
C#:
public virtual void LoadData()
{
	try
	{
		DbUtils.StartTransaction();

		// The WHERE clause will be empty when displaying all records in table.
		WhereClause wc = CreateWhereClause();
		this.DataSource = CustomersTable.GetRecords(wc);
	}
	catch (Exception ex)
	{
		throw ex;
	}
	finally
	{
		DbUtils.EndTransaction();
	}
}

protected virtual WhereClause CreateWhereClause()
{
	// Start with a blank WhereClause
	WhereClause wc = new WhereClause();

	// Create a WhereClause that is as follows:
	// Country = "USA" AND State = "California" AND (Name Contains "Jones" OR CompanyName Contains "Jones")

	// Add the value selected in the Country filter dropdown
	if (this.CountryFilter.SelectedValue != "")
	{
		wc.iAND(CustomersTable.Country, EqualsTo, this.CountryFilter.SelectedValue);
	}

	if (this.StateFilter.SelectedValue != "")
	{
		wc.iAND(CustomersTable.State, EqualsTo, this.StateFilter.SelectedValue);
	}

	// Now we need to create a separate WhereClause that OR's the search string and then
	// this separate clause is ANDed with the rest of the clauses)

	if (this.CustomersSearchArea != "")
	{
		WhereClause search = new WhereClause();

		search.iOR(CustomersTable.Name, Contains, this.CustomersSearchArea.Text);
		search.iOR(CustomersTable.CompanyName, Contains, this.CustomersSearchArea.Text);

		// Now AND this with the WhereClause wc defined earlier.
		wc.iAND(search);
	}

	return wc;
}
Visual Basic .NET:
Public Overridable Sub LoadData()
	Try
		DbUtils.StartTransaction()

		' The WHERE clause will be empty when displaying all records in table.
		Dim wc As WhereClause = CreateWhereClause()
		Me.DataSource = CustomersTable.GetRecords(wc)

	Catch ex As Exception
		Throw ex
	Finally
		DbUtils.EndTransaction()
	End Try
End Sub

Protected Overridable Function CreateWhereClause() As WhereClause

	' Start with a blank WhereClause
	Dim wc As WhereClause = New WhereClause

	' Create a WhereClause that is as follows:
	 ' Country = "USA" AND State = "California" AND (Name Contains "Jones" OR CompanyName Contains "Jones")

	' Add the value selected in the Country filter dropdown
	If Me.CountryFilter.SelectedValue <> "" Then
		 wc.iAND(CustomersTable.Country, EqualsTo, Me.CountryFilter.SelectedValue)
	End If

	 ' Add the value selected in the State filter dropdown
	If Me.StateFilter.SelectedValue <> "" Then
		wc.iAND(CustomersTable.State, EqualsTo, Me.StateFilter.SelectedValue)
	End If

	' Now we need to create a separate WhereClause that OR's the search string and then
	' this separate clause is ANDed with the rest of the clauses)

	If Me.CustomersSearchArea.Text <> "" Then
		Dim search As WhereClause = New WhereClause
		search.iOR(CustomersTable.Name, Contains, Me.CustomersSearchArea.Text)
		search.iOR(CustomersTable.CompanyName, Contains, Me.CustomersSearchArea.Text)

		' Now AND this with the WhereClause wc defined earlier.
		wc.iAND(search)
	End If

	Return wc
End Function
The GetRecords function takes a WHERE clause and retrieves all records that meet that criteria. Please note that the number of records returned is dependent on the number of records in the database. If you want to limit the number of records, you can pass additional parameters to the GetRecords function. The following code will return the third set of 50 records.
C#:
// By default we want to expand foreign keys and to sort in a case sensitive order
OrderBy orderBy = new OrderBy(true, true);

// Order by Name in Ascending order
orderBy.Add(CustomersTable.Name, Asc);

this.DataSource = CustomersTable.GetRecords(wc, orderBy, 3, 50);
Visual Basic .NET:
' By default we want to expand foreign keys and to sort in a case sensitive order
Dim orderBy As orderBy = New orderBy(True, True)

' Order by Name in Ascending order
orderBy.Add(CustomersTable.Name, Asc)

Me.DataSource = CustomersTable.GetRecords(wc, orderBy, 3, 50)
The above examples demonstrate how you can read a set of records from the database. If you want to access the records that are being displayed on a page, you would need to call the GetRecords() function on the Table Control class within the page.
In addition to the above example, you can also use the GetRecord function to read a single record from the database. GetRecord takes a WHERE clause similar to GetRecords and will return the first record that matches the query.
[bookmark: _Ref109713350][bookmark: _Ref137635249][bookmark: _Toc412569547][bookmark: _Toc414866255]Handling Post Back Events
In ASP.NET, each page is reloaded when a button is pressed or if you set the AutoPostBack property of a control to be True when its value has changed. Since the same overridden methods are called and the same event notifications are sent during a post back, you need to make sure that you check the post back property of a page when writing your custom code. For example, if you want to initialize a field to a value when the page is first displayed then you can handle an event and initialize this value. But if you do not check the post back property in the event handler, your field will be initialized again when the page is being reposted and thus overwrite any user entered value. This is perhaps the most common mistake made by .NET programmers.
C#:
if (!this.Page.IsPostBack)
{
	// This code executes when the page is first loaded.
}
else
{
	// This code executes during a button click or other postback.
}
// This code executes in all cases.
Visual Basic .NET:
If Not (Me.Page.IsPostBack) Then
	' This code executes when the page is first loaded.
Else
	' This code executes during a button click or other postback.
End If
' This code executes in all cases.
[bookmark: _Page_code_behind_1][bookmark: _Toc412569548][bookmark: _Toc414866256]Page code behind example
Partial Public Class Edit_Customers
 Inherits BaseApplicationPage

#Region "Section 1: Place your customizations here."

 Public Sub SetPageFocus()
 Public Sub LoadData()
 LoadData_Base()
 End Sub

 Private Function EvaluateFormula(…) As String
 Return EvaluateFormula_Base(…)
 End Function

 Public Sub Page_InitializeEventHandlers(…) Handles MyBase.Init
 Me.Page_InitializeEventHandlers_Base(sender,e)
 End Sub

 Public Sub Page_PreRender(…) Handles Me.PreRender
 Me.Page_PreRender_Base(sender,e)
 End Sub

 Public Overrides Sub SaveData()
 Me.SaveData_Base()
 End Sub

 Public Sub Page_PreInit(…) Handles Me.PreInit
 Me.PreInit_Base()
 End Sub

#Region "Ajax Functions"
 <Services.WebMethod()> _
 Public Shared Function GetRecordFieldValue(…) As Object()
 Return GetRecordFieldValue_Base(…)
 End Function

 <Services.WebMethod()> _
 Public Shared Function GetImage(…) As Object()
 Return GetImage_Base(…)
 End Function
#End Region

 Public Sub CancelButton_Click(…)
 CancelButton_Click_Base(…)
 End Sub

 Public Sub SaveButton_Click(…)
 SaveButton_Click_Base(…)
 End Sub
…

 Public Sub SetCustomersRecordControl()
 SetCustomersRecordControl_Base()
 End Sub

 Public Sub SetSaveButton()
 SetSaveButton_Base()
 End Sub

#End Region

#Region "Section 2: Do not modify this section."
…
 Protected Sub Page_InitializeEventHandlers_Base(…) 		
 AddHandler Me.CancelButton.Button.Click, AddressOf CancelButton_Click
 AddHandler Me.SaveButton.Button.Click, AddressOf SaveButton_Click
 End Sub

 Protected Overridable Sub Page_Load(…) Handles MyBase.Load

 Me.SetPageFocus()
 Me.Authorize("")
 If (Not Me.IsPostBack OrElse Me.Request("__EVENTTARGET") = "ChildWindowPostBack" OrElse (Me.Request("__EVENTTARGET") = "isd_geo_location")) Then
 Me.LoadData()
 End If
 End Sub

 Public Shared Function GetRecordFieldValue_Base(…) As Object()
 Public Shared Function GetImage_Base(…) As Object()
 Public Sub SetControl_Base(ByVal control As String)
 Select Case control
 Case "CustomersRecordControl"
 SetCustomersRecordControl()
 Case "OrdersTableControl"
 SetOrdersTableControl()
 End Select
 End Sub
 Public Sub SaveData_Base()
 Me.CustomersRecordControl.SaveData()
 End Sub

 Public Sub PreInit_Base()

 Public Sub Page_PreRender_Base(…)
 Public Sub LoadData_Base()
 DbUtils.StartTransaction()
 Me.DataBind()
 SetCustomersTabContainer()
 SetOrdersTabPanel()
…
 SetSaveButton()
…
 DbUtils.EndTransaction()
 End Sub
…
 Public Overridable Function EvaluateFormula_Base(…) As String

 Public Sub SetCustomersTabContainer_Base()
 Public Sub SetOrdersTabPanel_Base()
 Public Sub SetCustomersRecordControl_Base()
…
 Public Sub SetSaveButton_Base()

 Public Sub CancelButton_Click_Base(…)
 Public Sub SaveButton_Click_Base(…)
 DbUtils.StartTransaction
 If (Not Me.IsPageRefresh) Then
 Me.SaveData()
 End If

 Me.CommitTransaction(…)
 DbUtils.EndTransaction
 End Sub
#End Region
End Class

[bookmark: _Record_Control_code][bookmark: _Toc412569549][bookmark: _Toc414866257]Record Control code example
#Region "Section 1: Place your customizations here."
 Public Class CustomersRecordControl
 Inherits BaseCustomersRecordControl
 End Class
#End Region

#Region "Section 2: Do not modify this section."
 Public Class BaseCustomersRecordControl
 Inherits MyApp42.UI.BaseApplicationRecordControl

 Protected Overridable Sub Control_Init(…) Handles MyBase.Init
 End Sub

 Protected Overridable Sub Control_Load(…) Handles MyBase.Load
 AddHandler Me.Address.TextChanged, AddressOf Address_TextChanged
 AddHandler Me.City.TextChanged, AddressOf City_TextChanged
…
 End Sub

 Public Overridable Sub LoadData()
 Dim wc As WhereClause = Me.CreateWhereClause()
 Dim recList() As CustomersRecord = CustomersTable.GetRecords(wc, Nothing, 0, 2)
 Me.DataSource = CustomersTable.GetRecord(recList(0).GetID.ToXmlString(), True)
 End Sub

 Public Overrides Sub DataBind()
 MyBase.DataBind()
 SetAddress()
 SetCity()
…
 End Sub

 Public Overridable Sub SetAddress()
…
 End Sub

 Public Overridable Sub SetCity()
…
 End Sub

 Public Overridable Function EvaluateFormula(…) As String
…
 End Function

 Public Overridable Sub SaveData()
 Me.LoadData()
 Me.Validate()
 Me.GetUIData()
 If Me.DataSource.IsAnyValueChanged Then
 Me.DataSource.Save()
 End If
 End Sub

 ' To customize, override this method in CustomersRecordControl.
 Public Overridable Sub GetUIData()
 GetAddress()
 GetCity()
 End Sub

 Public Overridable Sub GetAddress()
…
 End Sub

 Public Overridable Sub GetCity()
…
 End Sub

 Public Overridable Function CreateWhereClause() As WhereClause
…
 End Function

 Protected Overridable Sub Control_PreRender…) Handles MyBase.PreRender
 ' PreRender event is raised just before page is being displayed.
 Try
 DbUtils.StartTransaction()
 Me.LoadData()
 Me.DataBind()
 Catch ex As Exception
 Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)
 Finally
 DbUtils.EndTransaction()
 End Try
 End Sub

 End Class
#End Region

[bookmark: _Ref109713355][bookmark: _Toc412569550][bookmark: _Toc414866258]Additional Page Lifecycle References
Understanding ASP.NET View State and Page Lifecycle:
http://msdn.microsoft.com/en-us/library/ms972976.aspx
The ASP.NET Page Object Model:
http://msdn.microsoft.com/en-us/library/aa479007.aspx
[bookmark: _Customizing_and_Debugging][bookmark: _Toc412569551][bookmark: _Toc414866259]Customizing and Debugging Inside Iron Speed Base Classes
[bookmark: Iron_Speed_Designer8]Iron Speed Designer applications use a library of Base Classes that extend the functionality provided by Microsoft .NET Framework. The source code for the Base Classes is provided to you as part of Iron Speed Designer so you can modify or debug using this library.
By default the Base Classes are compiled in Release mode and do not contain debugging information. If you want to debug inside the Base Classes, you must recompile the Base Classes in Debug mode using the Visual Studio version for the .NET framework used by your application.
Step 1: Using Visual Studio .NET, open:
<Designer installation folder>\BaseClasses\BaseClasses.2005.vbproj
<Designer installation folder>\BaseClasses\BaseClasses.2008.vbproj
<Designer installation folder>\BaseClasses\BaseClasses.2010.vbproj
<Designer installation folder>\BaseClasses\BaseClasses.2012.vbproj
Step 2: Go to the Build menu in Visual Studio .NET (not Iron Speed Designer), select Configuration Manager and select the Debug compilation mode.
Step 3: Select Build, Rebuild Solution.
Step 4: Copy the BaseClasses.dll and BaseClasses.pdb files from the Bin folder, e.g.:
<Designer installation folder>\BaseClasses\Bin\VS2005 or VS 2008 or VS2010 or VS 2012
to your application’s Bin folder, e.g.:
C:\MyApp\Bin
Step 5: Rebuild you application using Visual Studio .NET in debug mode.
You should be able to debug within Base Classes in addition to your application.
If you do not need to debug but only to change code and include new BaseClasses.dll into the application you can skip changing compilation mode from Release to Debug.

38

[bookmark: _Toc95816303][bookmark: _Toc104379706][bookmark: _Toc104634682][bookmark: _Ref114808957][bookmark: _Toc412569557][bookmark: _Toc95816211][bookmark: _Ref69648072][bookmark: _Toc95816212][bookmark: _Toc104092557][bookmark: _Toc104207602][bookmark: _Toc104267769][bookmark: _Toc104092558][bookmark: _Toc414866260]Customizing Application Security
Authentication (security) and authorization (role management) types
Iron Speed Designer provides these authentication mechanisms in your application:
· Database Security. Validates user using user name and password against the record in the database. Can be used only with Database Roles which are retrieved from the same database.
· Microsoft Active Directory Security. Validates the user against a Microsoft Active Directory server on your network. It creates a Directory Entry using the user name and password and then creates a DirectorySearcher to retrieve information regarding this particular user; the user is considered authenticated if information is retrieved. It can be used with Database Roles, Active Directory Groups and Microsoft Authorization Manager (AzMan) roles store. Active Directory security allows using single sign in for Intranet users. It will retrieve user name from the context and use it to retrieve information from Active Directory. Active Directory Security requires certain settings in your Microsoft IIS web server and in your application application.
· Microsoft SharePoint Security. Can be used only in combination with SharePoint Groups authorization. SharePoint sites and their groups are used as security roles. Validates the user against a Microsoft SharePoint server on your network by retrieving the logged in user’s credentials from the SharePoint Context. It is possible to use sites without specifying the exact SharePoint web application or make them Web Application specific.
· Windows Authentication. Verifies if HttpContext.Current.Identity.User is set and if yes considers this user as logged in and retrieves roles from the Database. If roles can’t be retrieved, sets them to Non-Anonymous. Important: Use this security type carefully because it does not require user to type in password and effectively authenticates every user who logged in into the domain. This security type should be used only you’re your application and Microsoft IIS web server set to ‘Windows Authentication’. If HttpContext.Current.User is not set, and Database Roles is selected as a Roles management then it will redirect to the Sign In page and use the database to authenticate the user name and password. So if your application is used both for intranet and Internet users, the latter will use normal database authentication.
· None Security. Security is disabled and all roles information is disregarded.
Currently these authorization (role-based security) types are implemented:
· Database Roles. Used with Database Security, Windows Authentication Security or Active Directory Security. In all cases retrieves roles from the database based on user name which could be validated by any security.
· Active Directory Groups. Used with Active Directory Security only. Allows using Active Directory groups as user roles. Allows use of nested groups (if configured via the Application Security Wizard), meaning that user1 can be member of groupA, which in turn is a member of groupB and if groupB is set as a role for a page or control user1 will get access to the page or control even if it is not a direct member of groupB.
· Microsoft Authorization Manager. Used with Active Directory Security only and allows to use custom set of roles with Active Directory user entries.
· None Roles. When selected all roles are treated as Signed In only. Does not modify roles stored for pages or controls.

	Authentication
	Authorization
	Details

	Database
	Database
	No single sign in. Authenticates against Database with user name and password. Roles from database.

	Database
	None
	No single sign in. Authenticates against Database with user name and password. Any role is treated as Signed In Only.

	Active Directory
	Database
	Single sign in (Uses HttpContext.Current.User.Identity to get user name and domain for single sign In). Authenticates against Active Directory. If can’t sign-In automatically presents Sign In page and uses user name and password to authenticate with Active Directory.
Retrieves roles from the database, uses user name to retrieve a record for single sign in or user name and password for normal sign in. If no record exists, user gets only Signed In role.

	Active Directory
	Active Directory
	Single sign in (Uses HttpContext.Current.User.Identity to get user name and domain for single sign in). Authenticates against Active Directory. If can’t sign-in automatically presents Sign In page and uses user name and password to authenticate with Active Directory.
Roles = groups to which user belongs. Retrieves either immediate groups user belongs to if “nested groups” option is not checked, or also all groups which have immediate groups as a member recursively (unlimited level of nesting) if “nested groups” option is checked.

	Active Directory
	Azman
	Single sign in (Uses HttpContext.Current.User.Identity to get user name and domain for single sign In). Authenticates against Active Directory. If can’t sign-in automatically presents Sign In page and uses user name and password to authenticate with Active Directory.
Roles are retrieved from Microsoft Authorization Manager (AzMan) using user name.

	SharePoint Authentication
	SharePoint Groups
	Single Sign In (Uses SharePoint.SPContext.Current.Web.CurrentUser to get user name). Does not authenticate; if user is present in the context he/she is considered to be authenticated. Always tries to sign in user first, regardless of “Automatically sign in” option.
Retrieves roles (groups and sites) from SharePoint context.

	Windows Authentication
	Database
	Single sign in (Uses HttpContext.Current.User.Identity to get user name and domain for single sign In). Does not authenticate; if user is present in the context he/she is considered to be authenticated. Always tries to sign in user first, regardless of “Automatically sign in” option. If no user in context is present, presents Sign In page and uses user name and password to authenticate with Database.
Retrieves roles from the database, uses user name to retrieve a record for single sign in or user name and password for normal sign in. If no record exists, user gets only Signed In role.

	Windows Authentication
	None
	Single sign in (Uses HttpContext.Current.User.Identity to get user name and domain for single sign In). Does not authenticate, if user is present in the context he/she considered to be authenticated. Always tries to sign in user first, regardless of “Automatically sign in” option. If no user is present and page is secured, user will be redirected to the Sign In page but there is no way to login so whatever he/she types in the login screen he will not be authenticated.

CurrentSecurity interface overview
Depending on security type, the security interface CurrentSecurity is implemented by different classes. The functionality is common for all classes and does not depend on the security type. These methods are used to perform various security related tasks and are defined in the ISecurity interface so they could be called from any page that derives from BasePage via the ISecurity instance. These methods can be called from any page in the following manner:
DirectCast(Me.Page, BaseApplicationPage).CurrentSecurity.LogOut(CType(Me.Page, BaseApplicationPage))

Function ValidateCurrentUser(ByVal appRoles As String) As SecurityControls.ValidationResults
This method validates a user. It verifies if the user currently stored in the session user has one of appRoles and returns one of ValidationResults. This method calls the appropriate validation procedure depending on the role management type.
Function SetLoginInfo(ByVal userName As String, ByVal userPassword As String, ByRef errorMessage As String) As Boolean
This method authenticates the user and stores the user name, domain, roles and user ID into the session to be used by ValidateCurrentUser later on.
Function Logout(ByVal page As BaseClasses.Web.UI.BasePage) As Boolean
Clears the session and by that logs out the user.
Function GetUserStatus() As String
This method returns the user name if the user is logged in and the empty string if not.
Function SetUser(ByVal userName As String, Optional ByVal userID As String = "", Optional ByVal userRoles As String = "") As Boolean
This method stores user’s information in the session without authentication. This method can be used if you provide custom authentication functionality.
Additional CurrentSecurity methods
Also there are several methods which are not page dependant and can be called from any class in your application. These methods are implemented as shared (static) methods and they allow retrieving and setting security related values separately. They are defined in the SecurityControls class so they can be called anywhere in your code by specifying the SecurityControls class name in front, such as:
SecurityControls.SetCurrentUserRoles(roles)

Public Shared Function IsUserInRole(ByVal context As HttpContext, ByVal appRolesLst As System.Collections.IList) As Boolean
Public Shared Function IsUserInRole(ByVal appRoles As String) As Boolean
These two methods verify if the currently logged in user has one of roles from appRolesLst.
Public Shared Function GetCurrentUserRoles() As String
This method retrieves user roles from the session for the currently logged in user. It returns the empty string if the user is not logged in or if no roles are assigned. This method works for all security types.
Public Shared Function GetCurrentUserName() As String
This method retrieves the user name from the session for the currently logged in user. It returns the empty string if the user is not logged in. This method works for all security types.
Public Shared Function GetCurrentUserID() As String
This method retrieves the user ID from the session for the currently logged in user. It returns the empty string if the user is not logged in or if no user ID was assigned. This method works for all security types.
Public Shared Sub SetCurrentUserName(ByVal usrName As String)
This method allows you to set user name for the currently logged in user from any class in your application. This method does not perform any authentication or validation. It sets the user name even if the user is not logged in. It can be called for any security type.
Public Shared Sub SetCurrentUserID(ByVal usrID As String)
This method allows you to set the user ID for the currently logged in user from any class in your application. This method does not perform any authentication or validation. It sets the user ID even if the user is not logged in. It can be called for any security type.
Public Shared Sub SetCurrentUserRoles(ByVal usrRoles As String)
This method allows you to set roles for the currently logged in user from any class in your application. This method does not perform any authentication or validation. It sets roles even if the user is not logged in. It can be called for any security type.
Public Shared Function GetUserRecord(Optional ByVal userID As String = "") As IUserIdentityRecord
This method returns the database record for the userID or current logged in user if the userID is omitted. It returns Nothing if userID is invalid or no user is logged in. It only returns a record for Database Security and Nothing in other cases.
Logic related to the sign in process is located in the SignIn.aspx code-behind file created by Iron Speed Designer. It has calls to all methods in Section 1 which allows you to modify any part of the logic. Logic related to the sign out process is located in the SignOut.aspx code-behind file.
Events
When user logs in and logs out, LogEvent is raised and it can be handled on any page to perform custom logic and to cancel the login or logout process.
Public Event LogEvent(ByVal args As LogInEventArgs)
LogEvent can be handled on any page or any class derived from BasePage or BaseApplicationPage as long as it is the currently loaded page.
The event has one argument of type LogInEventArgs with the following public members:
Cancel – Boolean property. If set to true in the event handler it cancels either the sign in or sign out process which will then return false.
LoggedInUserID – String. Returns the user ID of the logged in user. If the event type is LoggedIn, this is the user ID used to login whether successful or not.
LoggedInUserName – String. Returns the user name of the logged in user. If the event type is LoggedIn, this is the user name used to login whether successful or not.
LoggedIn – Boolean property. Returns true if the user is logged in and false otherwise.
EventType – One of the following types: LoggingIn, LoggedIn, LoggingOut, LoggedOut, SettingIn and SetIn.
CurrentSecurity class locations
CurrentSecurity is an instance of the ISecurity Interface implemented in:
BaseClasses\Utils\SecurityControls.vb
The ActiveDirectorySecurity class is located in:
BaseClasses\Utils\ActiveDirectorySecurity.vb
The RoleBasedSecurity class is located in:
BaseClasses\Utils\RoleBasedSecurity.vb
The WindowsSecurity class located in:
BaseClasses\Utils\WindowsSecurity.vb
The NoneSecurity class, located in:
BaseClasses\Utils\NoneSecurity.vb
RoleBasedSecurity uses regular database table(s) to authenticate users and determine user roles(s); the ActiveDirectorySecurity class uses Active Directory to authenticate users; and the WindowsSecurity class uses the Windows context to retrieve logged in users.
With Active Directory security you may choose either to use Active Directory Groups as roles (this logic is implemented in the same ActiveDirectorySecurity class), Database Roles tables or Microsoft Authorization Manager as a policy store. With Windows Security you may use only Database Roles.
Logic for Active Directory Groups is implemented in the ActiveDirectoryGroups class, located in:
BaseClasses\Utils\ActiveDirectoryGroups.vb
Logic for Authorization Manager is implemented in the AzManRoles class, located in:
BaseClasses\Utils\AzManRoles.vb
Logic for Database Roles is implemented in the ProprietoryRoles class, located in:
BaseClasses\Utils\ProprietoryRoles.vb
Finally all authentication types can be used without role management in which case NoneRoles class will be used which is implemented in:
BaseClasses\Utils\NoneRoles.vb
Examples
Implementing Custom User Authentication
Example: Overriding Security at the Page Level
Example: Programmatically Accessing the Currently Logged-in User
Example: Access User Name and Password from Sign In Control
Example: Allow Only Active Users to Login
Example: Encrypting Passwords Before Saving to the Database
Example: Restrict Login after Incorrect Password Used

[bookmark: _Ref236127640][bookmark: _Toc412569558][bookmark: _Toc414866261]Implementing Custom User Authentication

Customization strategies and examples
Most of customizations related to the sign in process should be implemented in the SignIn.aspx code-behind file in Section 1. Here are several example customizations.
One example is where authentication is provided by your custom logic and without the authentication logic created by Iron Speed Designer; the Sign In page is not displayed.
Step 1: Modify the LoadData method in Section 1 of the SignIn.aspx code-behind file instead of calling CookieInit(), e.g.:
DirectCast(Me.Page, BaseApplicationPage).CurrentSecurity. SetUser(userName, userID, userRoles).
Step 2: Redirect the user back to the page where user came from.
RedirectOnSuccess()
Another example is performing an action upon logging in or logging out, for example to retrieve a record for the logged in user and check some value or update another table.
Private Sub LogInHandle(ByVal args As LogInEventArgs) Handles Me.LogEvent
 	Select Case args.EventType
		Case Utils.Events.LoggedIn
			Dim rec As IUserIdentityRecord = SecurityControls.GetUserRecord()
			Dim columns() As BaseColumn = rec.TableAccess.TableDefinition.Columns
		End Select
End Sub
A final example is implementing single sign-in using Database Security. No customization is required. Simply use Windows Security and Database role management.
Using your own custom authentication mechanism
This example shows how to customize your application to use a different authentication mechanism.
Step 1: Modify the BaseClasses.Utils.ActiveDirectorySecurity, BaseClasses.Utils.WindowsSecurity or BaseClasses.Utils.RoleBasedSecurity class, located in:
...\<Designer>\BaseClasses\Utils\ActiveDirectorySecurity.vb
and
...\<Designer>\BaseClasses\Utils\RoleBasedSecurity.vb
In particular, you may need to modify the implementation of the following methods:
Function ValidateCurrentUser(ByVal appRoles As String) As SecurityControls.ValidationResults
Function SetLoginInfo(ByVal userName As String, ByVal userPassword As String, ByRef errorMessage As String) As Boolean
Function Logout(ByVal page As BaseClasses.Web.UI.BasePage) As Boolean
Function GetUserStatus() As String
Function SetUser(ByVal userName As String, Optional ByVal userID As String = "", Optional ByVal userRoles As String = "") As Boolean
Step 2: Recompile BaseClasses.DLL using the modified BaseClasses source code.
Step 3: Copy the new BaseClasses.DLL (and BaseClasses.PDB if present) into your application’s Bin directory. Your application now has customized authentication.
Encrypting and decrypting authentication passwords
You can customize the authentication mechanism created by Iron Speed Designer to encrypt and decrypt user-entered passwords.
The application security logic is in several classes, but from customization perspective the SignIn class is the most relevant, located in:
Security\SignIn.aspx.cs (.vb)
The Login method in the class stores the user name and password in encrypted format in a cookie on the application user’s machine if the ‘remember’ checkbox is checked on the application’s Sign In page.
When the application user tries to open a secured page, he is redirected to the Sign In page where the SignIn_PreRender method (in Security\SignIn.aspx.cs (.vb) is executed. This method retrieves the user name and password and the ‘automatically sign in’ status from the cookie on the application user’s machine and decrypts them.
This method is followed by the Page.Load handler, which calls LoadData, which in turn calls the CookieInit method. CookieInit performs different logic related to cookie initialization and also tries to sign in by calling the Login method (in Security\SignIn.aspx.cs (.vb)) with the user name and password retrieved from cookies (if set to automatically sign in) or otherwise just inserts the user name and password into the textboxes in the Sign In page. For Active Directory security, if nothing is stored but ‘Automatically sign in’ is checked, it will use the logged-in user's identity from HTTPContext.
When the application user clicks OK on the Sign In page, and if login is successful, the MySetCookie method is called, which in turn encrypts values from the Sign In page’s text boxes and stores them in cookies on the application user’s machine.
Slightly different logic is implemented for Windows Security: When the Authorize method is called from the fist page navigated (Authorize is implemented in the BasePage class located in BaseClasses\Web\UI\BasePage.vb) it always calls the Me.CurrentSecurity.ValidateCurrentUser() method which is implemented for all security types. For Windows Security, this method immediately retrieves logged in user information from the HttpContext and uses it as the logged in user ID to retrieve roles from the database if database security is configured.
[bookmark: _Ref106102550][bookmark: _Toc412569559][bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: _Toc414866262]Example: Overriding Security at the Page Level
July 23, 2009
Iron Speed Designer V6.2 and later
In some cases, it may be advantageous to provide custom or alternative security on a page-by-page basis. You can do this by passing information to the page via a .NET session variable, by handling events rased by the security layer or by calling methods defined in the SecurityControls class. Before each page is displayed, retrieve the session variable or call one of aforementioned methods and perform the necessary checks to determine whether the user has permission to view the page.
One approach is to perform such validation by overriding the Authorize method. However you do not need to do this on a page by page basis. You can also override the Authorize method in the BaseApplicationPage class. BaseApplicationPage is the class from which all page classes are derived in your application.
In the example below, a signed-in user with DeptID “1” is restricted from accessing EditOrders.aspx and AddOrders.aspx.
Step 1: Enable application security using the Application Security Wizard in Iron Speed Designer.
Step 2: Create an application using the Orders table in the Northwind database. Set the start page to ShowOrdersTable.aspx. Set the access permissions for ShowOrdersTable.aspx to “Grant access only to signed in users”.
Step 3: Add the following code in the SignIn_Control class of SignIn_Control.ascx.cs located in:
Security\SignIn.aspx.cs (.vb)
C#:
public SignIn ()
{
	this.LoginSucceeded+= new LoginSucceededHandler(SignIn_Control_LoginSucceeded);
}

private void SignIn_Control_LoginSucceeded(object sender, System.EventArgs e)
{
	string myId = this.SystemUtils.GetUserID();
	string whereStr = "EmployeeID='" + myId +"'";
	EmployeesRecord myrec = EmployeesTable.GetRecord(whereStr);
	if(myrec != null)
	{
		System.Web.HttpContext.Current.Session["mySessionVar"] = myrec.DeptID;
	}
}
Visual Basic .NET:
Private Sub Page_LoginSucceeded(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.LoginSucceeded
	Dim myId As String = Me.SystemUtils.GetUserID
	Dim whereStr As String = "EmployeeID='" & myId & "'"
	Dim myrec As EmployeesRecord = EmployeesTable.GetRecord(whereStr)
	If (Not myrec Is Nothing) Then
		System.Web.HttpContext.Current.Session("mySessionVar") = myrec.DeptID
	End If
End Sub
Note: DeptID is a field (of type int) added to the Employees table (Northwind) in the database. You can replace DeptID with any other field.
Step 3: Add your code in the BaseApplicationPage class of BaseApplicationPage.cs located in:
<Application Folder>\App_Code\Shared\BaseApplicationPage.cs
C#:
public BaseApplicationPage()
{
	base.Load += new System.EventHandler(this.Page_Load);
	this.Load += new System.EventHandler(BaseApplicationPage_Load);	
}

private void BaseApplicationPage_Load(object sender, System.EventArgs e)
{
	if (System.Web.HttpContext.Current.Session["MySessionVar"] != null)
	{
		int myDeptID = (int)System.Web.HttpContext.Current.Session["MySessionVar"];
		if (myDeptID == 1)
		{
			if (this.Page.GetType().Name == "orders_editorderspage_aspx" ||
				this.Page.GetType().Name == "orders_addorderspage_aspx")
			{
				this.Page.Response.Redirect("../Orders/ShowOrdersTable.aspx");
			}
		}
	}
}
Visual Basic .NET:
Private Sub myPage_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Load
	If (Not System.Web.HttpContext.Current.Session("MySessionVar") Is Nothing) Then
		Dim myDeptID As Integer = CType(System.Web.HttpContext.Current.Session("MySessionVar"), Integer)
		If (myDeptID = 1) Then
			If (Me.Page.GetType.Name = "orders_editorderspage_aspx" OrElse
				Me.Page.GetType.Name = "orders_addorderspage_aspx") Then
				Me.Page.Response.Redirect("../Orders/ShowOrdersTable.aspx")
			End If
		End If
	End If
End Sub
Instead of handling Login_Succeeded you may also handle LogEvent which is always fired when login happens even if the login was automatic as with Windows Security which effectively does not go to the Sign In page. Handling LogEvent may be also useful if you do not want to use the Sign In page.
See Customizing Application Security for details regarding LogEvent.
[bookmark: _Ref197921049][bookmark: _Toc412569560][bookmark: _Toc414866263]Example: Programmatically Accessing the Currently Logged-in User
July 23, 2009
Iron Speed Designer V6.2 and later
This example shows how to retrieve information about currently logged user and his/her roles via a code customization.
Verifying that the currently logged-in user has particular role(s)
This is applicable for all security types, including database security and Active Directory security.
C#:
BaseClasses.Utils.SecurityControls.IsUserInRole(System.Web.HttpContext.Current, "role1;role2;role3");
Visual Basic .NET:
BaseClasses.Utils.SecurityControls.IsUserInRole(System.Web.HttpContext.Current, "role1;role2;role3")
Retrieve the logged-in user’s user ID
C#:
string UserID = SecurityControls.GetCurrentUserID();
Visual basic .NET:
Dim userID As String = SecurityControls.GetCurrentUserID()
Retrieve the current user’s roles
This applies to retrieving Active Directory security roles.
C#:
string usrRoleStr = SecurityControls.GetCurrentUserRoles();
Visual Basic .NET:
Dim usrRoleStr As String = SecurityControls.GetCurrentUserRoles()
Retrieve the logged-in user’s user name
C#:
SecurityControls.GetCurrentUserName();
Visual Basic .NET:
SecurityControls.GetCurrentUserName()
You also can set these values and manually set the logged in user ID without using the Iron Speed Designer security layer.
See Customizing Application Security for details.
[bookmark: _Ref157426701][bookmark: _Toc412569561][bookmark: _Toc414866264]Example: Access User Name and Password from Sign In Control
October 13, 2011
Iron Speed Designer V6.2 and later
Frequently it is useful to store information about the logged in user for subsequent use in your application. For example, you might maintain an “audit table” to track who logged into your application and when. Such information is conveniently stored in session variables and can be useful while creating an audit trail.
Follow these steps to access the User Name and Password of a signed-in user from within the Sign In control.
Step 1: In Iron Speed Designer, create an application using a database table, such as the Orders table in the Northwind database.
Step 2: Enable application security using the Application Security Wizard in Iron Speed Designer. Select “Grant Access only to signed-in users”.
Step 3: Add the following code to the SignIn_Control class, located in:
Security\SignIn.aspx.cs (.vb)
C#:
using System;

public SignIn()
{
 this.Initialize();
 this.Init += new EventHandler(SignIn_Init);
}

private void SignIn_Init(object sender, System.EventArgs e)
{
 this.LoginSucceeded += SignIn_ LoginSucceeded;
}

private void SignIn_ LoginSucceeded(object sender,System.EventArgs e)
{
	string myUserName = this.UserName.Text;
	string myPassword = this.Password.Text;
	//
	// Now you can use UserName and Password
	// You can add more code customization
	//
}
Visual Basic .NET:
Security\SignIn.aspx.vb

Protected Sub Page_LoginSucceeded1(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.LoginSucceeded
	'Access UserName and Password
	Dim myUserName As String = Me.UserName.Text
	Dim myPassword As String = Me.Password.Text
	'Now you can use UserName and Password
	'You can add more code customization
End Sub
You also can handle LogEvent which is fired before and after login and logout and has arguments which have information about the user ID, user name and ability to cancel event.
See Customizing Application Security for details.
Step 4: Build and run your application.
[bookmark: _Ref157426706][bookmark: _Toc412569562][bookmark: _Toc414866265]Example: Allow Only Active Users to Login
July 23, 2009
Iron Speed Designer V6.2 and later
If you have an Active / Inactive flag in your application’s user table and would like only active users to login, you can accomplish this in multiple ways using Iron Speed Designer.
Use a database view
The simplest way is to create a database view in your database that only contains the Active users and excludes Inactive users. Then you can use this database view as the User “table” in the Application Security Wizard in Iron Speed Designer.
Use a code customization
Step 1: In Iron Speed Designer, create an application using a database table, such as the Orders table in Northwind.
Step 2: Enable application security using the Application Security Wizard in Iron Speed Designer. Select “Grant Access only to signed-in users”.
Step 3: Override the Login() method in SignIn_Control.Control.vb or .cs using a code customization. The Login() method is defined in BaseSignIn_Control.vb or .cs, located in:
Security\SignIn.aspx.cs (.vb)
Your code customization might look something like:
C#:
using MyApp12.<namespace of your User Table >;

public void Login(bool redirectOnSuccess)
{
	string strUserName = this.UserName.Text;
	string strPassword = this.Password.Text;

	// Check if user has entered the user name and password.
	if (((strUserName != "") && (strPassword != "")))
	{
		// Construct a WHERE clause to retrieve the record that
		// matches the specified username
		string colName = UsersTable.Instance.UserNameColumn.UniqueName;
		string whereStr = colName + "= '" + strUserName + "'";
		UsersRecord rec = UsersTable.GetRecord(whereStr);

		// Check if this is a valid user and is active
		if (((rec == null) || (!rec.Active)))
		{
			// Display an error message and return
			// For testing purpose, you can change the message with
			// different string to check if it works
			ProcessLoginFailed("Invalid login information.
Please enter a valid user name.", strUserName);
			return;
		}
		// Otherwise, fall through to call the Base Class's Login function.
	}
	this.Login_Base(redirectOnSuccess);
}
Visual Basic .NET:
Imports MyApp.<Namespace of your User Table>

Public Sub Login(ByVal bRedirectOnSuccess As Boolean)
	Dim strUserName As String = Me.UserName.Text
	Dim strPassword As String = Me.Password.Text

	'Check if user has entered the user name and password.
	If (strUserName <> "" AndAlso strPassword <> "") Then
		' Construct a WHERE clause to retrieve the record that
		' matches the specified username
		Dim columnName As String = UsersTable.Instance.UserNameColumn.UniqueName
		Dim whereStr As String = columnName & "= '" & strUserName & "'"
		Dim rec As UsersRecord = UsersTable.GetRecord(whereStr)

		' Check to see if this is a valid user and is active
		If ((IsNothing(rec)) OrElse Not(rec.Active)) Then
		 	' Display an error message and return
			' For testing purpose, you can change ERR_INVALID_LOGIN_INFO
			' with a different string to check if it works
			ProcessLoginFailed(ERR_INVALID_LOGIN_INFO, strUserName)
			Return
		End If
		' Otherwise fall through to call the base class's Login function.
	End If
	Me.Login_Base(bRedirectOnSuccess)
End Sub
Step 4: Build and run your application.
[bookmark: _Ref157426750][bookmark: _Toc412569563][bookmark: _Toc414866266]Example: Encrypting Passwords Before Saving to the Database
March 9, 2010
Iron Speed Designer V7.0 and later
Password storage
Most applications with built-in password security store the user name and password information in the underlying database. While this is convenient and allows for easy administration, it isn’t always the most secure because a variety of users, mostly internal, have access to that information. A malicious employee with access to password data can steal another user’s identity and forge bogus transactions. This form of identity theft is commonly used by insiders to create fictitious customer accounts and then ship products to mail drops or to initiate credit card refunds to their own accounts.
One simple and effective defense against identify theft is encrypting the password in the database using one of several simple encryption protocols. The application program encrypts the clear text password before comparing it to the stored encrypted password as part of its authentication protocol. This prevents unauthorized users from using the passwords because the clear text version isn’t stored in the database.
Iron Speed Designer can create role-based security for your application using user name and password fields in your database, and not in any special tables created by Iron Speed Designer. You can quickly and conveniently build applications on top of your existing database, using existing user names and passwords. Adding simple but effective password encryption is easily accomplished by sub-classing the sign in classes in the class hierarchy.
Data encryption and decryption
It’s often useful for applications to encrypt data before saving it to the database. Such a situation occurs when adding a new user record, and for security reasons, you do not want their password to be readable directly from the database.
In this example, we encrypt and decrypt data using the .NET Hash() function to encrypt the password data. Of course, you could use any encryption method you wish instead of the Hash() function. When a user logs in, we hash the password value and compare the hashed password to the encrypted password in database. They will match when user provides a correct password, and the user is allowed to log in.
Our hash key is a concatenation of the Password and UserID fields. Using two data elements lessens the chances of producing identical encrypted passwords if two users have the same password, thereby increasing our level of security. Our example also assumes a Users table in our database and the Users table contains at least two fields: UserID and Password.
Saving an encrypted password to the database
The following code customization encrypts the password before saving it into the database. Add this code to the UsersRecordControl class, located in:
<App Folder>\App_Code\Users\AddUsers.Controls.cs or .vb
C#:
using System.Security.Cryptography;
...
public override void GetUIData()
{
	 base.GetUIData();
	UsersRecord record = this.GetRecord();
	String myPassword = record.Password+record.UserName;
	HashAlgorithm mhash = new SHA1CryptoServiceProvider();
	byte[] bytValue = System.Text.Encoding.UTF8.GetBytes(myPassword);
	byte[] bytHash = mhash.ComputeHash(bytValue);
	mhash.Clear();
	record.Password = Convert.ToBase64String(bytHash);
}
Visual Basic .NET:
Imports System.Security.Cryptography
…
Public Overrides Sub GetUIData()
	MyBase.GetUIData()
	Dim record As UsersRecord = Me.GetRecord
	Dim myPassword As String = record.Password + record.UserName
	Dim mhash As HashAlgorithm = New SHA1CryptoServiceProvider
	Dim bytValue() As Byte = System.Text.Encoding.UTF8.GetBytes(myPassword)
	Dim bytHash() As Byte = mhash.ComputeHash(bytValue)
	mhash.Clear()
	record.Password = Convert.ToBase64String(bytHash)
End Sub
Using the encrypted password when logging into the application
The following code hashes the Password and UserID to create the encrypted password. It then puts this encrypted password back in to the Password text field before calling the base.login() method to complete the login process. Place this code in the SignInControl class, located in:
Security\SignIn.aspx.cs (.vb)
C#:
using System.Security.Cryptography;
using System;
...
public void Login(bool redirectOnSuccess)
{
	String myPassword= this.Password.Text+this. UserName.Text;
	HashAlgorithm mhash = new SHA1CryptoServiceProvider();
	byte[] bytValue = System.Text.Encoding.UTF8.GetBytes(myPassword);
	byte[] bytHash = mhash.ComputeHash(bytValue);
	mhash.Clear();
	this.Password.Text = Convert.ToBase64String(bytHash);
	this.Login_Base(redirectOnSuccess);
}
Visual Basic .NET:
Imports System.Security.Cryptography
Imports System

Public Sub Login(ByVal bRedirectOnSuccess As Boolean)
	Dim myPassword As String = (Me.Password.Text + Me. UserName.Text)
	Dim mhash As HashAlgorithm = New SHA1CryptoServiceProvider
	Dim bytValue() As Byte = System.Text.Encoding.UTF8.GetBytes(myPassword)
	Dim bytHash() As Byte = mhash.ComputeHash(bytValue)
	mhash.Clear()
	Me.Password.Text = Convert.ToBase64String(bytHash)
	Me.Login_Base(bRedirectOnSuccess)
End Sub
Note: The point of hashing is preventing the user from discovering the original data. Therefore, if a user forgets their password, that particular UserID will need to provide a new password.
[bookmark: _Toc106090441][bookmark: _Ref157426785][bookmark: _Toc412569564][bookmark: _Toc414866267]Example: Restrict Login after Incorrect Password Used
July 23, 2009
Iron Speed Designer V6.2 and later
A common access control security precaution is to limit the number of times a user is allowed to enter an incorrect user name or password. Once the limit is exceeded, they are locked out for a period of time before they are permitted to attempt logging in again with the same user name. By maintaining a count to ensure that a user should not be allowed more than X attempts in a period of time, you can restrict access when they exceed the allowed number of login attempts.
In the example below, a user is allowed three attempts to enter the correct password. After the third attempt, the user is restricted for a period of one minute.
Step 1: Use the Application Security Wizard (Tools, Application Security Wizard…) to enable application security for your application.
Step 2: In the Application Explorer, select a start page for your application.
Step 3: In the Application Security Wizard, select your start page and set the access permissions for the page as “Grant access only to signed in users”.
Step 4: Override the Login() and ProcessFailedLogin() methods in the SignIn_Control class, located in:
Security\SignIn.aspx.cs (.vb)
C#:
using System; // insert as a first line of the code
public void Login(bool bRedirectOnSuccess)
{
	if (isBlocked())
	{
		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "my message", "YOU CAN NOT LOGIN NOW");
	}
	else
	{
		if (this.Page.Cache["UserKey_" + this.UserName.Text] != null &&
			(int)this.Page.Cache["UserKey_" + this.UserName.Text] >3)
		{
			this.Page.Cache["UserKey_" + this.UserName.Text] = 0;
		}
		this.Login_Base(redirectOnSuccess);
	}
}

public bool isBlocked()
{
	object userCounter = this.Page.Cache["UserKey_" + this.UserName.Text];
	if ((Convert.ToInt32(userCounter)) >= 3 && (this.Page.Cache["UserBlocked"] != null))
	{
		return true;
	}
	return false;
}

protected override void ProcessLoginFailed(string message, string userName)
{
	object FailedLoginCounter = this.Page.Cache["UserKey_" + this.UserName.Text];
	if (FailedLoginCounter == null)
	{
		FailedLoginCounter = 0;
	}
	this.Page.Cache["UserKey_" + this.UserName.Text] = (int)FailedLoginCounter + 1;
	if (((int)this.Page.Cache["UserKey_" + this.UserName.Text]) == 3)
	{
		this.Page.Cache.Insert("UserBlocked", 1, null, DateTime.Now.AddMinutes(1), TimeSpan.Zero);
	}
	this.ProcessLoginFailed_Base (message, userName);
}
Visual Basic .NET:
Import System 	‘Insert in as a first line of code
Public Sub Login(ByVal bRedirectOnSuccess As Boolean)
	If isBlocked Then
		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(Me, "my message", "YOU CAN NOT LOGIN NOW")
	Else
		If ((Not (Me.Page.Cache(("UserKey_" + Me.UserName.Text))) Is Nothing) _
			AndAlso (CType(Me.Page.Cache(("UserKey_" + Me.UserName.Text)),Integer) > 3)) Then
				Me.Page.Cache(("UserKey_" + Me.UserName.Text)) = 0
		End If
		MyBase.Login(bRedirectOnSuccess)
	End If
End Sub

Public Function isBlocked() As Boolean
	Dim userCounter As Object = Me.Page.Cache(("UserKey_" + Me.UserName.Text))
	If ((Convert.ToInt32(userCounter) >= 3) _
		AndAlso (Not (Me.Page.Cache("UserBlocked")) Is Nothing)) Then
			Return true
	End If
	Return false
End Function

Protected Overrides Sub ProcessLoginFailed(ByVal message As String, ByVal userName As String)
	Dim FailedLoginCounter As Object = Me.Page.Cache(("UserKey_" + Me.UserName.Text))
	If (FailedLoginCounter = Nothing) Then
		FailedLoginCounter = 0
	End If

	Me.Page.Cache(("UserKey_" + Me.UserName.Text)) = (CType(FailedLoginCounter,Integer) + 1)

	If (CType(Me.Page.Cache(("UserKey_" + Me.UserName.Text)),Integer) = 3) Then
		Me.Page.Cache.Insert("UserBlocked", 1, Nothing, DateTime.Now.AddMinutes(1), TimeSpan.Zero)
	End If

	Me.ProcessLoginFailed_Base (message, userName)
End Sub
[bookmark: _Ref95816284][bookmark: _Toc104379710][bookmark: _Toc104634686][bookmark: _Toc412569565][bookmark: _Toc414866268]Sending Email from an Application
Updated March 30, 2010
Iron Speed Designer V7.0 and later
The best way to send email from your application is by using Iron Speed Designer’s built-in send email action feature in the Property Sheet. This requires no programming or custom code.
Programmatically sending an email
However, you can also programmatically send an email when a button is clicked in an application. The easiest way to implement this is to override the Button_Click() method in the TableControl class.
Step 1: Using the Application Wizard in Iron Speed Designer, create a set of application pages using a database table such as the Orders table in the Northwind database.
Step 2: Use the Application Explorer to open the ShowOrdersTable.aspx page.
Step 3: In the Layout Editor, select the Orders table panel and drag a Button control from the Toolbox onto the page next to the Export button.
Step 4: Select the newly added Button control and set these properties via the Property Sheet:
	Group
	Property
	Setting

	[Application Generation]
	Button action
	Custom

	Appearance
	Text
	myButton

	Behavior
	CausesValidation
Enable client-side validation
	True

Step 5: Override the Button_Click() method in the OrdersTableControl class, located in:
<Application Folder>\App_Code\Orders\ShowOrdersTable.Controls.cs or .vb
C#:
public override void Button_Click(object sender, EventArgs args)
{
	try
	{
		BaseClasses.Utils.MailSender email = new BaseClasses.Utils.MailSender();
		email.AddFrom("fromAddress@company.com");
		email.AddTo("toAddress@company.com");
		email.AddBCC("bccAddress@company.com");
		email.SetSubject("Confirmation");
		email.SetContent("Thank you for your request");
		email.SendMessage();
	}
	catch (System.Exception ex)
	{
		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "UNIQUE_SCRIPTKEY", ex.Message);
	}
}
Visual Basic .NET:
Public Overrides Sub Button_Click(ByVal sender As Object, ByVal args As EventArgs)
	Try
		Dim email As BaseClasses.Utils.MailSender = New BaseClasses.Utils.MailSender
		email.AddFrom("fromAddress@company.com")
		email.AddTo("toAddress@company.com")
		email.AddBCC("bccAddress@company.com")
		email.SetSubject("Confirmation")
		email.SetContent("Thank you for your request")
		email.SendMessage()
	Catch ex As Exception
		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(Me, "UNIQUE_SCRIPTKEY", ex.Message)
	End Try
End Sub
Step 6: You may need to configure your email server authentication to accept emails sent from your application program.
[bookmark: _Toc104137542][bookmark: _Toc104207622][bookmark: _Toc104267789][bookmark: _Ref104382448][bookmark: _Toc104634687][bookmark: _Toc412569566][bookmark: _Toc414866269]Send Password by Email
Updated June 5, 2006
Iron Speed Designer V4.0 and later
This example sends a password by email. Please note that you need to implement a page with a button that calls this function with the appropriate email address and password.
Private Sub SendPasswordByEmail(ByVal emailAddress As String, ByVal password As String, ByVal Msg As String)
	'Get the information needed to construct and send the email
	Dim fromAddress As String = "Iron Speed Technical Support"
	Dim bccAddress As String = “support@ironspeed.com”
	Dim subject As String = "Your Password"
	Dim content As String = "Here is your information to sign into the Iron Speed online technical support site." & vbCrLf & _
		vbCrLf & _
		"URL: " & "http://www.ironspeed.com/support" & vbCrLf & _
		"User Name: " & emailAddress & vbCrLf & _
		"Password: " & password & vbCrLf & _
		Msg & vbCrLf & vbCrLf & _
		"After you sign in, you can change your password by going to the My Account page." & vbCrLf & _
		"Sincerely," & vbCrLf & "Iron Speed Technical Support."

	Try
		'Construct the email
		Dim email As New BaseClasses.Utils.MailSender()
		email.AddFrom(fromAddress)
		email.AddTo(emailAddress)
		email.AddBCC(bccAddress)
		email.SetSubject(subject)
		email.SetContent(content)
		'Send the email
		email.SendMessage()
	Catch e As System.Exception
	End Try

End Sub
[bookmark: _Toc104378450][bookmark: _Toc104379711][bookmark: _Ref104382449][bookmark: _Toc104634688][bookmark: _Toc412569567][bookmark: OLE_LINK33][bookmark: OLE_LINK34][bookmark: _Toc414866270]Emailing the Contents of a Page
Updated January 12, 2010
Iron Speed Designer V6.2.1 and later
If you want to email the contents of a page to a user, you will need to execute the URL, receive the response from the server and email this response. To do this, you can use a utility function provided in your application classes to execute the URL and receive its response. Here is an example of how you can do it.
Visual Basic .NET:
Imports BaseClasses.Utils

Public Sub EmailPage()
	Dim content As String
	Try
		' execute a URL and receive the HTML content as a string
		content = NetUtils.ExecuteUrl("http://www.ironspeed.com?id=1")

		' compose a message with this content.
		Dim email As New BaseClasses.Utils.MailSender
		email.AddFrom("sales@ironspeed.com")
		email.AddTo("support@ironspeed.com")
		email.SetSubject("This is the subject")
		email.SetContent(content)
		email.SetIsHtmlContent(True)

		'Send the email
		email.SendMessage()
	Catch ex As Exception
		 ' handle error situations here
	End Try
End Sub
Application security
The ExecuteUrl function creates a new WebRequest for the URL and calls the WebResponse function get the page content. However, your application maintains the login ID and roles in the application’s session and the new WebRequest has its own (empty) session. When WebResponse is called, the page being read calls the Authorize method and attempts to authenticate the user. From this page's point of view, no one is logged in (session is empty) so the application security layer will try to automatically sign in the user. Otherwise, the user will be redirected to the Sign In page.
The Windows Authentication and Active Directory Authentication both have an automatic sign in feature; however, Database authentication security does not.
[bookmark: _Ref111890038][bookmark: _Toc412569568][bookmark: _Toc414866271]If You Have Problems Sending Email...
Updated June 5, 2006
Iron Speed Designer V4.0 and later
Problem
You inserted code into your application to send email, but the email doesn’t appear to work.
Solution
Step 1: Configure your email server. See If You Have Problems Sending Email... for details
Step 2: Stop and restart the SMTP service in Microsoft IIS. We've found this works in many cases!
Step 3: Make sure your anti-virus or personal firewall software isn't blocking your email. Typically this involves granting access to port 25.
For example, McAfee VirusScan Enterprise 8.0 VirusScan Console, Access Protection, Properties, Port-Blocking tab, Rule:"Prevent mass mailing worms from sending mail". This blocks outbound access to any port 25 on the network. The Edit button shows a list of excluded processes to which new processes can be added.
Add the aspnet_wp.exe process to grant permission to send emails from port 25.
See Also
http://www.systemwebmail.com/faq/4.2.9.aspx
Sending Email from an Application

[bookmark: _Toc412569569][bookmark: _Toc414866272]PDF Report Customization
Iron Speed Designer creates applications that can export data to PDF files. When application users click the PDF Report button located in most Table panels, the application produces a PDF file. The PDF report templates can be configured by modifying .report configuration files and by overriding the button click method in the page’s code-behind file.
See
Customizing PDF Report Configuration Files
Text Substitution Parameters for Titles, Headers, Footers and Columns
PDF Report Alignment Configuration
PDF Report Language and Culture-Based Configuration
Adding, Deleting and Rearranging Columns in PDF Reports
Customizing PDF Report Code

[bookmark: _Ref170216317][bookmark: _Toc412569570][bookmark: _Toc414866273]Customizing PDF Report Configuration Files
PDF reports can be configured by four types of PDF report template (.report) files. Nearly everything related to report layout, colors, fonts and layout can be configured using these XML files.
Page style-specific configuration file
This file is located in your application’s Reports folder. Each application has only one copy of this file, typically “PDF.report”.
<App Name>\Reports\PDF.report
This template file is shared by all PDF reports in your application. It specifies page style-specific properties. When you select a different page style in the Application Wizard, a new copy of this file is automatically copied into your application’s Reports folder for the newly selected page style.
Language-specific configuration file
This file is located in your application’s Reports folder, one copy for each language used in your application. For example, the English language file is PDF.en.report.
<App Name>\Reports\PDF.en.report
Language-specific report templates are shared by all PDF reports in your application. When you select new languages or culture in the Application Wizard, a copy of the language-specific configuration file is copied into your application’s Reports folder for the selected language.
The file’s template is located in:
...\<Iron Speed Designer Installation Folder>\ProjectTemplates\Reports
Iron Speed Designer does not provide this file for all languages; however, you can create one for the language you need by copying the English version (en) and customizing it.
Culture-specific configuration file
This file is located in your application’s Reports folder, one copy for each culture used in your application. For example, the English (United States) file is PDF.en-us.report.
<App Name>\Reports\PDF.en-us.report
Culture-specific configuration files are shared by all PDF reports in your application. When you select new languages or cultures in the Application Wizard, a copy of the culture-specific configuration file is copied into your application’s Reports folder for the selected culture.
The file’s template is located in:
...\<Iron Speed Designer Installation Folder>\ProjectTemplates\Reports
Iron Speed Designer does not provide this file for all languages; however, you can create one for the language you need by copying the American English version (en-us) and customizing it.
Button-specific configuration file
This file is located in each page folder, one copy for each PDF report in your application. The file name is in the format:
<Page>.<Button Control Name>.report
For example, if you have a PDF report button named CustomersPDFButton, a report configuration file called “ShowCustomersTable.CustomersPDFButton.report” is automatically created.
...\MyApp\Customers\ShowCustomersTable.CustomersPDFButton.report
When you change the PDF Report buttons’ control names, Iron Speed Designer renames the corresponding button-specific configuration files to match the new control names. If you add a PDF Report button or change the PDF Report button’s properties via the Property Sheet, a button-specific configuration file will be created for your PDF Report button. If you remove the PDF Report button or change its properties, the corresponding button-specific configuration file will be removed.
The .report file schema structure and organization
Page style-specific, language-specific and culture-specific report configuration files have the same schema. Button-specific configuration files, however, have a different schema because each Column tag in the file specifies properties for a particular column.
	[image: PDFReport1]

	Main schema organization

	[image: PDFReport2]

	The Font tag and its related parent tags

	[image: PDFReport5]

	The Style tag and its children

	

	

	The Column tag and its children for a button-specific file (left) and other .report file (right).

Here are the appropriate values you can use in the XML tags:
	Parameter
(Tag / Node)
	Where Used
(Parent Node)
	Values

	BackgroundColor
	Style
AltStyle
	Specifies the background color as a 6 digit hex number.
Default value is 000000.

	Bold
	Font
		True
	Display the text as boldface.

	False
	Do not display the text as boldface.

Default value is False.

	Bottom
	BorderColor
	Specifies the bottom borders’s color as a 6 digit hex number.
Default value is ffffff.

	Bottom
	BorderWidth
	Specifies the bottom borders’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Bottom
	Padding
	Specifies the bottom padding as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Bottom
	PageFooter
	Specifies the distance between the bottom edge of the page and the bottom of the page footer as a decimal number. “pt” is default units.
The units of measure are “pt”, “cm”, and “mm”. “pt” is the default unit of measure if none is specified.
Default value is 1 pt.

	BottomMargin
	Report
	Specifies the report’s bottom margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	Color
	Font
	Specifies the color of the body text font.
The color code is a 6 digit hex number.
Default value is ffffff.

	Encoding
	Font
		Unicode
	Encode the text using Unicode encoding.

	None
	Do not Unicode encode the text.

Default value is “Unicode”.
Note: This parameter has no effect when running your application in Medium Trust mode.

	FileName
	Font
	Specifies the True Type font used for the report text. True Type font files have a “ttf” extension. These files are located in the “fonts” folder under the Microsoft Windows installation directory.
Iron Speed Designer only supports True Type fonts, so Chinese, Japanese, or Korean (CJK) characters can not be used in the report.
Note: When Unicode is applied, some font files cannot be used. For example, Arial supports all non-CJK (Chinese, Japanese, and Korean) strings such as Hebrew or German, but Verdana does not support Unicode.
Default value is Arial.ttf
Note: This parameter has no effect when running your application in Medium Trust mode.

	HorizontalAlign
	Style
		Top
	

	Bottom
	

	Middle
	

	Center
Middle
	Middle and Center are identical.

Default value is Default.
For more information regarding to Default, visit Horizontal alignment for PDF report

	Italic
	Font
		True
	Display the text in italics.

	False
	Do not display the text in italics.

Default value is False.

	Left
	BorderColor
	Specifies the left border’s color as a 6 digit hex number.
Default value is ffffff.

	Left
	BorderWidth
	Specifies the left border width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Left
	Padding
	Specifies the left padding size as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	LeftMargin
	Report
	Specifies the report’s left margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	PageHeight
	Report
	Specifies the report’s page height.
	CulturalDefaultForLandscape
	Apply either 8.5in or 210mm as the page height according to the culture.

	CulturalDefaultForPortrait
	Apply either 11in or 297mm as the page height according to the culture.

	Decimal number
	Specifies the page height as a decimal number. The units of measure are “pt”, “cm”, and “mm”.

Default value is CulturalDefaultForLandscape.

	PageWidth
	Report
	Specifies the report’s page width.
	CulturalDefaultForLandscape
	Apply either 11in or 297mm as the page width according to the culture.

	CulturalDefaultForPortrait
	Apply either 8.5in or 210mm as the page width according to the culture.

	Decimal number
	Specifies the page width in decimal number. The units of measure are “pt”, “cm”, and “mm”.

Default value is CulturalDefaultForLandscape.

	ReportDirection
	Report
		LeftToRight
	Display the columns from left to right on the page.

	RightToLeft
	Display the columns from right to left on the page. If RightToLeft is chosen, columns’ order is ‘reversed’ from most European languages, which display left to right. Also, the left and right alignments are swapped throughout the report.

	LanguageDefault
	Display the text based on the language or cultural default.

Default value is LanguageDefault.

	Right
	BorderColor
	Specifies the right border’s color as a 6 digit hex number.
Default value is ffffff.

	Right
	BorderWidth
	Specifies the right border’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Right
	Padding
	Specifies the right padding size as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	RightMargin
	Report
	Specifies the report’s right margin as a decimal number
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	Size
	Font
	Specifies the size of the body text font as a decimal height in points (“pt”). “pt” is unit of measure.
Default value is 8 pt.

	TextDirection
	Font
		LeftToRight
	Display the text from left to right on the page.

	RightToLeft
	Display the text from right to left on the page.

	LanguageDefault
	Display the text based on the language or cultural default.

Default value is LanguageDefault.

	Top
	BorderColor
	Specifies the top border’s color as a 6 digit hex number.
Default value is ffffff.

	Top
	BorderWidth
	Specifies the top border’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Top
	Padding
	Specifies the top padding height as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Top
	PageHeader
	Decimal number represents the distance between the top edge of the page and the top of the page header.
The units of measure are “pt”, “cm”, and “mm”. “pt” is the default unit of measure if none is specified.
Default value is 1 pt.

	TopMargin
	Report
	Specifies the report’s top margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	Underline
	Font
		True
	Display the text as underlined.

	False
	Do not display the text as underlined.

Default value is False.

	Value
	LeftHeader
LeftFooter
RightHeader
RightFooter
CenterHeader
CenterFooter
Header
Detail
	Specifies the text to be displayed in the page header, page footer, and table detail.
Default value is an empty string.

	VerticalAlign
	Style
		Top
	

	Bottom
	

	Middle
	

	Center
Middle
	Middle and Center are identical.

Iron Speed Designer only supports “Top” alignment for column text.
Default value is Top.

	Width
	Column
	Specifies the column width as a relative width of the column. The actual column width is prorated based on the widths of all of the columns included in the page and the report’s page width.
Default value is 100.

Applying properties specified in .report configuration files
When an application user clicks a “PDF Report” button in your application, it reads and applies the .report files in this order:
1. Button-specific configuration file (e.g., ShowEmployeesTable.EmployeesPDFButton.report)
2. Culture-specific configuration file (e.g., PDF.en-CA.report)
3. Language-specific configuration file (e.g., PDF.en.report)
4. Page style-specific configuration file (e.g., PDF.report)
Let’s assume you have specified at least one column in the button-specific configuration file. While a report is created, your application attempts to apply the properties specified in the button-specific configuration file. If some properties are not available, it will then look for the missing properties in the culture-specific configuration file. If some are also not available in that file, it will look in the language-specific configuration file. Finally, if they are not specified in the language-specific configuration file, it will find them in the page style-specific configuration file. If a property is not specified in any of these files, then default properties will be used.
The properties specified in the button-specific configuration file have the highest priority. If their properties are specified in the right format, they can override properties specified in the other files. If the properties are inappropriate, for example, the color codes are not six digit hex numbers, they will be discarded.
The following example illustrates how to override various properties in the .report files.
PDF.report:
<Columns>
<Column>
		<Header>
			<Style>
				
					<Color>ffffff</Color>
					<Size>7pt</Size>
					<FileName>Arial.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<Color>000000</Color>
					<Size>7pt</Size>
					<FileName>Verdana.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
			
		</Detail>
	</Column>
</Columns>
PDF.en.report:
<Columns>
<Column>
		<Header>
			<Style>
				
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
				
			</Style>
			
			<AltStyle>
				<FontColor>000000</FontColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
PDF.en-CA.report:
<Columns>
<Column>
		<Header>
			<Style>
				
					<Color>ffffff</Color>
					<FileName>Ariaal.ttf</FileName>
					<Underline>True</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<FileName>Arial.ttf</FileName>
				
			</Style>
			
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
ShowEmployeesTable.EmployeesPDFButton.report:
<Columns>
<Column>
		<Width>100</Width>
		<Header>
			<Value>First Name</Value>
		</Header>
		<Detail>
			<Value>${Customers.FirstName}</Value>
			<Style>
				
					<Size>7pt</Size>
				
			</Style>
		</Detail>
	</Column>
<Column>
		<Width>100</Width>
		<Header>
			<Value>Last Name</Value>
			<Style>
				
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.LastName}</Value>
			<Style>
				
					<Color>0000</Color>
				
			</Style>
		</Detail>
	</Column>
</Columns>
Overridden result:
<Columns>
<Column>
		<Width>100</Width>
		<Header>
			<Value>First Name</Value>
			<Style>
				
					<Color>ffffff</Color>
					<Underline>True</Underline>
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
					<Color>ffffff</Color>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.FirstName}</Value>
			<Style>
				
					<Size>7pt</Size>
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
					<Color>000000</Color>
					<Size>7pt</Size>
					<Bold>False</Bold>
					<Underline>False</Underline>
				
			</Style>
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
<Column>
		<Width>100</Width>
		<Header>
			<Value>Last Name</Value>
			<Style>
				
					<Color>ffffff</Color>
					<Underline>True</Underline>
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.LastName}</Value>
			<Style>
				
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
					<Color>000000</Color>
					<Size>7pt</Size>
					<Bold>False</Bold>
					<Underline>False</Underline>
				
			</Style>
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
In the example, the button-specific configuration file contains two Column tags. Each Column tag specifies properties for a particular column. However, the other .report files can specify one Column tag only because the properties specified in this tag are shared by all columns. How can the button-specific configuration file override the other .report files? When your application determines the overridden result, Column tags in the first three files are cloned to the amount matching the button-specific configuration file. Then your application searches the appropriate values from the button-specific configuration file to the page style-specific configuration file in order to produce the overridden result. If a .report file is missing or was not written in the appropriate XML format, your application will move on to the next file in the hierarchy.
[bookmark: _Ref170290248][bookmark: _Toc412569571][bookmark: _Toc414866274]Text Substitution Parameters for Titles, Headers, Footers and Columns
Several text substitution parameters are available for customizing your report’s title, page header and page footer.
	Text Substitution Parameter
	Description

	${ReportTitle}
	A report title specified in the page’s code-behind file.
For details, see Customizing PDF Report Code.

	${PageLabel}
	A page label specified in the “Txt:Page” resource in your application’s resource file (RESX).
Your application’s resource file is located in:
App_GlobalResources\<App Name>.resx

	${PageNum}
	An automatically incrementing page number. The first page is numbered “1”, the second page is “2” and so forth.

	${Date:?)
	A date or time where “?” is a letter indicating the .NET date and time format.
For more information, visit:
http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.71).aspx

These substitution parameters are typically used in the following context:
<Footer>
	<Value>${PageNum}</Value>
</Footer>
There are several caveats.
Column headers do not accept any substitution parameters.
For the column detail, the available substitution parameters are specified in the AddData() function calls in the page’s code-behind file. For example:
report.AddData ("${Customers.CustomerID}",
	record.Format(CustomersTable.CustomerID),
	ReportEnum.Align.Left,
	100)
The available substitution parameter is "${Customers.CustomerID}" representing the value of the CustomerID in each row.
You can combine several substitution parameters together. For example, in page headers and footers, you can use
<Value>${PageLabel} ${PageNum}</Value>
In the column detail, you can use
<Value>${Customers.LastName}, {Customers.FirstName}</Value>
Finally, if there is no column specified in the button-specific configuration file, your application will still read the .report files. However, the table is created according to the AddColumn function calls in the page’s code-behind file.
[bookmark: _Ref170290249][bookmark: _Toc412569572][bookmark: _Toc414866275]PDF Report Alignment Configuration
If a button-specific configuration file specifies at least one column, the table cells will be formatted according to the button-specific configuration file. If the button-specific configuration file does not specify any columns, the column cells will be laid out by the AddColumn function calls in the page’s code-behind file.
Column layout using button-specific configuration files
By way of example, if the overridden property for horizontal alignment is “Left”, “Right”, “Center”, or “Middle”, the text will be aligned accordingly. However, if it is “Default”, the horizontal alignment will be determined by the parameters specified in the AddData function calls in the page’s code-behind file. The following example illustrates this.
Overridden properties from the .report files are:
<Column>
	<Header>
		<Value>Postal Code</Value>
		<Style>
			<HorizontalAlign>Default</HorizontalAlign >
		</Style>
	</Header>
	<Detail>
		<Value>${Customers.PostalCode}</Value>
		<Style>
			<HorizontalAlign>Default</HorizontalAlign >
		</Style>
	</Detail>
</Column>
AddData function call in the page’s code-behind file:
report.AddData("${Customers.PostalCode}",
	record.Format (CustomersTable.PostalCode),
	ReportEnum.Align.Left,
	100)
To determine the horizontal alignment for the column header and column detail, your application looks at the Header and Detail tags for the column detail. In this example, the Value tag contains the “${Customers.PostalCode}” substitution parameter. Your application determines the default horizontal alignment for “${Customers.PostalCode}”. The third parameter of the AddData function call tells your application the default horizontal alignment is “left”, so left alignment is applied to the column header and column detail. Since your application determines horizontal alignment for both the column header and column detail using the same Value tag, column headers and column bodies are always have the same default horizontal alignment.
If the Value tag specifies several substitution parameters or other strings, the horizontal alignment will be “left” regardless the parameters specified in the AddData function calls. For example:
· ${Customers.ContactName}\r\n${Customers.Address}\r\n${Customers.City} ${Customers.State}, ${Customers. PostalCode }
· CA ${Customers.PostalCode}
· California
However, if the overridden ReportDirection property is “True”, horizontal alignment for the entire report will be swapped.
Customizing report layout with AddColumn function calls
Column headers and column bodies can be controlled via the AddColumn function calls in the page’s code-behind file, for example:
report.AddColumn(CustomersTable.CustomerID.Name,
	ReportEnum.Align.Center,
	"${Customers.CustomerID}",
	ReportEnum.Align.Left, 15)
The second parameter specifies the horizontal alignment for the column header. The forth parameter specifies the horizontal alignment for the column detail. However, keep in mind that if the overridden ReportDirection property is ‘True’, horizontal alignment for the entire report will be swapped.
Horizontal alignment of page headers and footers
The left of page header and footer are aligned to the left. The center of page header and footer are aligned to the middle. The right of page header and footer are aligned to the right. Keep in mind that if the overridden property of ReportDirection is true, horizontal alignments for the whole report will be swapped in all circumstances. In addition, the left of page header and footer are shown on the right side. The right page header and footer are shown on the left side.
[bookmark: _Ref170290251][bookmark: _Toc412569573][bookmark: _Toc414866276]PDF Report Language and Culture-Based Configuration
When a PDF report button is clicked, your application creates a report based on the session’s culture and language. For example, if they are French (Canada), your application determines the overridden properties from PDF.fr.report and ReportDefault.fr-CA.report report configuration files. These overridden properties may be specified with cultural or language dependent values. In this situation, your application applies the substitution values.
PageHeight
	Culture
	Cultural Dependent Value
	Substitution

	Canada or the U.S
	CulturalDefaultForLandscape
	11 in

	Other culture
	CulturalDefaultForLandscape
	297 mm (A4 size)

	Canada or the U.S
	CulturalDefaultForProtrait
	8.5 in

	Other culture
	CulturalDefaultForProtrait
	210 mm (A4 size)

PageWidth
	Culture
	Cultural Dependent Value
	Substitution

	Canada or the U.S
	CulturalDefaultForLandscape
	297 mm (A4 size)

	Other culture
	CulturalDefaultForLandscape
	11 in

	Canada or the U.S
	CulturalDefaultForPortrait
	210 mm (A4 size)

	Other culture
	CulturalDefaultForPortrait
	8.5 in

ReportDirection
	Language
	Cultural Dependent Value
	Substitution

	Language with left to right text direction
	LanguageDefault
	LeftToRight

	Language with right to left text direction
	LanguageDefault
	RightToLeft

TextDirection
	Language
	Cultural Dependent Value
	Substitution

	Language with left to right text direction
	LanguageDefault
	LeftToRight

	Language with right to left text direction
	LanguageDefault
	RightToLeft

[bookmark: _Ref192940366][bookmark: _Toc412569574][bookmark: _Toc414866277]Adding, Deleting and Rearranging Columns in PDF Reports
If you are not satisfied with the column layout of your PDF report, there are two approaches to configuring your report:
1. Modify the button-specific .report file
2. Override the button click handler method
Modifying the button-specific .report file
First, open the associated button-specific .report file and locate the appropriate <Column> section you wish to modify.
		<Columns>
			<Column>
				<Width>100</Width>
				<Header>
					<Value>Company Name</Value>
					<Style>
					<BorderWidth>
						<Left>0pt</Left>
						<Right>0pt</Right>
						<Top>0pt</Top>
						<Bottom>2pt</Bottom>
					</BorderWidth>
					<BorderColor>
						<Left>000000</Left>
						<Right>000000</Right>
						<Top>000000</Top>
						<Bottom>dcbb4a</Bottom>
					</BorderColor>
					
						<Color>333333</Color>
						<Size>7pt</Size>
						<FileName>Arial.ttf</FileName>
						<Bold>True</Bold>
						<Italic>False</Italic>
						<Underline>False</Underline>
						<RightToLeft>CulturalDefault</RightToLeft>
						<Encoding>CulturalDefault</Encoding>
					
					<VerticalAlign>Middle</VerticalAlign>
					<HorizontalAlign>Default</HorizontalAlign>
					<Padding>
						<Left>5pt</Left>
						<Right>5pt</Right>
						<Top>5pt</Top>
						<Bottom>5pt</Bottom>
					</Padding>
					<BackgroundColor>dcbb4a</BackgroundColor>
					</Style>
				</Header>
				
	
				<Detail>
					<Value>${Customers.CompanyName}</Value>
					<Style>
						<BorderWidth>
							<Left>0pt</Left>
							<Right>0pt</Right>
							<Top>0pt</Top>
							<Bottom>1pt</Bottom>
						</BorderWidth>
						<BorderColor>
							<Left>000000</Left>
							<Right>000000</Right>
							<Top>000000</Top>
							<Bottom>cccccc</Bottom>
						</BorderColor>
						
							<Color>666666</Color>
							<Size>7pt</Size>
							<FileName>Arial.ttf</FileName>
							<Bold>False</Bold>
							<Italic>False</Italic>
							<Underline>False</Underline>
							<RightToLeft>CulturalDefault</RightToLeft>
							<Encoding>CulturalDefault</Encoding>
						
						<VerticalAlign>Top</VerticalAlign>
						<HorizontalAlign>Default</HorizontalAlign>
						<Padding>
							<Left>5pt</Left>
							<Right>5pt</Right>
							<Top>5pt</Top>
							<Bottom>5pt</Bottom>
						</Padding>
						<BackgroundColor>ffffff</BackgroundColor>
					</Style>
	
				
					<AltStyle>					
						<FontColor>666666</FontColor>
						<BackgroundColor>d9e3eb</BackgroundColor>
					</AltStyle>
				</Detail>
			</Column>
		More column nodes...
		</Columns>
By default, the content is wrapped in comment tags (“<!—“ and “”) so the section is ignored while your application is creating the PDF report. Remove these comment tags to active this section. In addition, the Style and AltStyle tags do not have to be present in this file. If you are not working on any advanced setting such as changing alignment, border, padding, etc, you can remove these tags. After removing these tags, you should get the following:
		<Columns>
			<Column>
				<Width>100</Width>
				<Header>
					<Value>Company Name</Value>
				</Header>
				
	
				<Detail>
					<Value>${Customers.CompanyName}</Value>	
				</Detail>
			</Column>
		More column nodes...
		</Columns>
Next, change the Value and Width tags. The Width tag represents relative width of the column. You should specify a number here. The first Value tag represents the text of the column header. The second Value tag represents the the text of each row, and you should place substitution parameters here. If you want to know what substitution parameters are available, you can go to the button click handler method. Within this method is code similar to:
report.AddData("${CustomerCustomerDemoTable.CustomerID.Name}", record.Format(CustomerCustomerDemoTable.CustomerID), ReportEnum.Align.Left)
The first parameter tells you that "${CustomerCustomerDemoTable.CustomerID.Name}" is a substitution parameter you can use. After configuring the first column, follow the same procedure to configure the other columns.
Overriding the button click handler method
Copy the code in the button click handler method from section 2 and paste it to the overridden method in section 1. Here is a representative version:
	try {
		DbUtils.StartTransaction();
		PDFReport report = new PDFReport();
		report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersPDFButton.report");
		report.Title = "Customers";
		report.AddColumn(CustomersTable.CustomerID.Name, ReportEnum.Align.Left, "${CustomersTable.CustomerID.Name}",
			ReportEnum.Align.Left, 15);
		report.AddColumn(CustomersTable.CompanyName.Name, ReportEnum.Align.Left,
			"${CustomersTable.CompanyName.Name}", ReportEnum.Align.Left, 28);
		report.AddColumn(CustomersTable.ContactTitle.Name, ReportEnum.Align.Left, "${CustomersTable.ContactTitle.Name}",
			ReportEnum.Align.Left, 24);

		WhereClause whereClause = CreateWhereClause();
		OrderBy orderBy = CreateOrderBy();
		int rowsPerQuery = 1000;
		int pageNum = 0;
		int recordCount = 0;
		int totalRecords = CustomersTable.GetRecordCount(whereClause);

		report.Page = Page.GetResourceValue("Txt:Page", "MyApp31");
		report.ApplicationPath = this.Page.MapPath(Page.Request.ApplicationPath);

		ColumnList columns = CustomersTable.GetColumnList();
		CustomersRecord[] records = null;
		do
		{
			records = CustomersTable.GetRecords(whereClause, orderBy, pageNum, rowsPerQuery);
			if (records != null && records.Length > 0)
			{
				foreach (CustomersRecord record in records)
				{
					report.AddData("${CustomersTable.CustomerID.Name}", record.Format(CustomersTable.CustomerID),
						ReportEnum.Align.Left);
					report.AddData("${CustomersTable.CompanyName.Name}", record.Format(CustomersTable.CompanyName),
						 ReportEnum.Align.Left, 100);
					report.AddData("${CustomersTable.ContactTitle.Name}", record.Format(CustomersTable.ContactTitle),
						ReportEnum.Align.Left, 100);

					report.WriteRow();
				}
				pageNum++;
				recordCount += records.Length;
			}
		}
		while (records != null && recordCount < totalRecords);
		report.Close();
		BaseClasses.Utils.NetUtils.WriteResponseBinaryAttachment(this.Page.Response, report.Title + ".pdf",
			report.ReportInByteArray, 0, true);
		this.Page.CommitTransaction(sender);
	} catch (Exception ex) {
		this.Page.RollBackTransaction(sender);
		this.Page.ErrorOnPage = true;

		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);
	} finally {
		DbUtils.EndTransaction();
	}
Next, modify the report.AddColumn method calls. To remove a particular column from the PDF report, remove the corresponding report.AddColumn call. If you want to add a column, please refer to PDF Report Alignment Configuration.
[bookmark: _Ref170215305][bookmark: _Toc412569575][bookmark: _Toc414866278]Customizing PDF Report Code
You can rearrange columns, change column alignments and other aspects of your report by overriding and customizing the report code in the report’s button click handler method located in:
<App Name>\App_Code\<Table Name>\Show<Table Name>Table.Controls.cs or .vb
For example:
...\MyApp\App_Code\Customers\ShowCustomersTable.Controls.cs
Here is an example of report code for the ShowCustomersTable.aspx page.
C#:
public virtual void CustomersPDFButton_Click(object sender, ImageClickEventArgs args)
{
	try {
		DbUtils.StartTransaction();
		PDFReport report = new PDFReport();
		report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersPDFButton.report");
		report.Title = "Customers";
		report.AddColumn(CustomersTable.CustomerID.Name, ReportEnum.Align.Left, "${CustomersTable.CustomerID.Name}",
			ReportEnum.Align.Left, 15);
		report.AddColumn(CustomersTable.CompanyName.Name, ReportEnum.Align.Left,
			"${CustomersTable.CompanyName.Name}", ReportEnum.Align.Left, 28);
		report.AddColumn(CustomersTable.ContactTitle.Name, ReportEnum.Align.Left, "${CustomersTable.ContactTitle.Name}",
			ReportEnum.Align.Left, 24);

		WhereClause whereClause = CreateWhereClause();
		OrderBy orderBy = CreateOrderBy();
		int rowsPerQuery = 1000;
		int pageNum = 0;
		int recordCount = 0;
		int totalRecords = CustomersTable.GetRecordCount(whereClause);

		report.Page = Page.GetResourceValue("Txt:Page", "MyApp31");
		report.ApplicationPath = this.Page.MapPath(Page.Request.ApplicationPath);

		ColumnList columns = CustomersTable.GetColumnList();
		CustomersRecord[] records = null;
		do
		{
			records = CustomersTable.GetRecords(whereClause, orderBy, pageNum, rowsPerQuery);
			if (records != null && records.Length > 0)
			{
				foreach (CustomersRecord record in records)
				{
					report.AddData("${CustomersTable.CustomerID.Name}", record.Format(CustomersTable.CustomerID),
						ReportEnum.Align.Left);
					report.AddData("${CustomersTable.CompanyName.Name}", record.Format(CustomersTable.CompanyName),
						 ReportEnum.Align.Left, 100);
					report.AddData("${CustomersTable.ContactTitle.Name}", record.Format(CustomersTable.ContactTitle),
						ReportEnum.Align.Left, 100);

					report.WriteRow();
				}
				pageNum++;
				recordCount += records.Length;
			}
		}
		while (records != null && recordCount < totalRecords);
		report.Close();
		BaseClasses.Utils.NetUtils.WriteResponseBinaryAttachment(this.Page.Response, report.Title + ".pdf",
			report.ReportInByteArray, 0, true);
		this.Page.CommitTransaction(sender);
	} catch (Exception ex) {
		this.Page.RollBackTransaction(sender);
		this.Page.ErrorOnPage = true;

		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);
	} finally {
		DbUtils.EndTransaction();
	}
}
Visual Basic .NET:
Public Overridable Sub CustomersPDFButton_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)

	Try
		Dim report As PDFReport = New PDFReport
		report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersPDFButton.report")
		report.Title = "Customers"

		report.AddColumn(CustomersTable.CustomerID.Name, ReportEnum.Align.Center, "${Customers.CustomerID}",
			ReportEnum.Align.Left, 15)
		report.AddColumn(CustomersTable.CompanyName.Name, ReportEnum.Align.Center, "${Customers.CompanyName}",
			ReportEnum.Align.Left, 28)
		report.AddColumn(CustomersTable.ContactName.Name, ReportEnum.Align.Center, "${Customers.ContactName}",
			ReportEnum.Align.Left, 24)
		report.AddColumn(CustomersTable.ContactTitle.Name, ReportEnum.Align.Center, "${Customers.ContactTitle}",
			ReportEnum.Align.Left, 24)
		Dim whereClause As WhereClause = CreateWhereClause
		Dim orderBy As OrderBy = CreateOrderBy
		Dim rowsPerQuery As Integer = 1000
		Dim pageNum As Integer = 0
		Dim recordCount As Integer = 0
		Dim totalRecords As Integer = CustomersTable.GetRecordCount(whereClause)

		report.Page = Page.GetResourceValue("Txt:Page", "MyApp144")
		report.ApplicationPath = Me.Page.MapPath(Page.Request.ApplicationPath)

		Dim columns As ColumnList = CustomersTable.GetColumnList()
		Dim records As CustomersRecord() = Nothing
		Do
			records = CustomersTable.GetRecords(whereClause, orderBy, pageNum, rowsPerQuery)
			If Not (records Is Nothing) AndAlso records.Length > 0 Then
				For Each record As CustomersRecord In records

				report.AddData("${Customers.CustomerID}", record.Format(CustomersTable.CustomerID),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.CompanyName}", record.Format(CustomersTable.CompanyName),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.ContactName}", record.Format(CustomersTable.ContactName),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.ContactTitle}", record.Format(CustomersTable. ContactTitle),
					ReportEnum.Align.Left, 100)
				report.WriteRow
			Next
			System.Math.Min(System.Threading.Interlocked.Increment(pageNum), pageNum-1)
			recordCount += records.Length
			End If
		Loop While Not (records Is Nothing) AndAlso recordCount < totalRecords
		report.Close
		BaseClasses.Utils.NetUtils.WriteResponseBinaryAttachment(Me.Page.Response,
			report.Title + ".pdf", report.ReportInByteArray, 0, true)
		Me.Page.CommitTransaction(sender)
	Catch ex As Exception
		Me.Page.RollBackTransaction(sender)
 		Me.Page.ErrorOnPage = True
		Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)
	Finally
		DbUtils.EndTransaction
	End Try
End Sub
The following sections discuss several aspects of the report generation code that are frequently customized.
The AddData function call
The AddData() function supplies data to the report. AddData calls are generally followed by WriteRow function calls to write the data to the PDF report. AddData()’s parameters are:
· Substitution parameter
· Data to be exported
· Default horizontal alignment for the supplied data
· Maximum length of the data to be exported
The AddColumn function call
The AddColumn function specifies the column layout. AddColumn() is called once for each column in the report.: AddColumn()’s parameters are:
· Column header text
· Horizontal alignment of the column header
· Column Detail contained in the substitution parameter
· Horizontal alignment of the column detail
· Relative column width
In the example above, the first AddColumn() call uses "${Customers.CustomerID}" for the column detail. This means that the first column displays whatever text is supplied by the first AddData() call because they both have the same substitution parameter, "${Customers.CustomerID}".
You can also use a combination of substitution parameters. For example, to create a column with the following format:
[ContactName]
[Address]
[City], [State] [PostalCode]
Your AddColumn() calls should take the following as the third parameter.
C#:
"${Customers.ContactName}\r\n${Customers.Address}\r\n${Customers.City} ${Customers.State}, ${Customers. PostalCode }"
Visual Basic .NET:
"${Customers.ContactName}}” & VbCrlf & ”${Customers.Address}” & VbCrlf & ”${Customers.City} ${Customers.State}, ${Customers. PostalCode }"
Note that “\r\n” and “VbCrlf” represent a new line.
Button-specific configuration file paths
In the example code, you can see:
report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersPDFButton.report")
This line of code specifies the location of a button-specific configuration file (see Introduction of .report files). If this file specifies a table with at least one column, your application will not use the column layout provided by the AddColumn function and instead will use the column layout provided by the button-specific configuration file.
ReportDirection
Keep in mind if the overridden property of ReportDirection is RightToLeft, the horizontal alignments and the column order will be swapped. Therefore, the column specifies by the first AddColumn call displays on the right side, and the column specifies by the last AddColumn function call displays on the left side.
See Customizing PDF Report Configuration Files for information regarding to overridden properties.
[bookmark: _Toc412569576][bookmark: _Toc414866279]Microsoft Word Report Customization
Iron Speed Designer creates applications that can export data to Microsoft Word files. When application users click the Microsoft Word Report button located in most Table panels, the application produces a Word file. The Microsoft Word report templates can be configured by modifying .word configuration files and by overriding the button click method in the page’s code-behind file.
See
Customizing Microsoft Word Report Configuration Files
Text Substitution Parameters for Titles, Headers, Footers and Columns
Microsoft Word Report Alignment Configuration
Microsoft Word Report Language and Culture-Based Configuration
Customizing Microsoft Word Report Code

[bookmark: _Ref189569875][bookmark: _Toc412569577][bookmark: _Toc414866280]Customizing Microsoft Word Report Configuration Files
Microsoft Word reports can be configured by four types of Microsoft Word report template (.word) files. Nearly everything related to report layout, colors, fonts and layout can be configured using these XML files.
Page style-specific configuration file
This file is located in your application’s Reports folder. Each application has only one copy of this file, typically “WordReport.word”.
<App Name>\Reports\WordReport.word
This template file is shared by all Microsoft Word reports in your application. It specifies page style-specific properties. When you select a different page style in the Application Wizard, a new copy of this file is automatically copied into your application’s Reports folder for the newly selected page style.
Language-specific configuration file
This file is located in your application’s Reports folder, one copy for each language used in your application. For example, the English language file is WordReport en.word.
<App Name>\Reports\WordReport.en.word
Language-specific report templates are shared by all Microsoft Word reports in your application. When you select new languages or culture in the Application Wizard, a copy of the language-specific configuration file is copied into your application’s Reports folder for the selected language.
The file’s template is located in:
...\<Iron Speed Designer Installation Folder>\ProjectTemplates\Reports
Iron Speed Designer does not provide this file for all languages; however, you can create one for the language you need by copying the English version (en) and customizing it.
Culture-specific configuration file
This file is located in your application’s Reports folder, one copy for each culture used in your application. For example, the English (United States) file is WordReport.en-us.word.
<App Name>\Reports\WordReport.en-us.word
Culture-specific configuration files are shared by all Microsoft Word reports in your application. When you select new languages or cultures in the Application Wizard, a copy of the culture-specific configuration file is copied into your application’s Reports folder for the selected culture.
The file’s template is located in:
...\<Iron Speed Designer Installation Folder>\ProjectTemplates\Reports
Iron Speed Designer does not provide this file for all languages; however, you can create one for the language you need by copying the American English version (en-us) and customizing it.
Button-specific configuration file
This file is located in each page folder, one copy for each Microsoft Word report in your application. The file name is in the format:
<Page>.<Button Control Name>.word
For example, if you have a Microsoft Word report button named CustomersWordButton, a report configuration file called “ShowCustomersTable.CustomersWordButton.word” is automatically created.
...\MyApp\Customers\ShowCustomersTable.CustomersWordButton.word
When you change the Microsoft Word report buttons’ control names, Iron Speed Designer renames the corresponding button-specific configuration files to match the new control names. If you add a Microsoft Word report button or change the Microsoft Word report button’s properties via the Property Sheet, a button-specific configuration file will be created for your Microsoft Word report button. If you remove the Microsoft Word report button or change its properties, the corresponding button-specific configuration file will be removed.
The .word file schema structure and organization
Page style-specific, language-specific and culture-specific report configuration files have the same schema. Button-specific configuration files, however, have a different schema because each Column tag in the file specifies properties for a particular column.
	[image: PDFReport1]

	Main schema organization

	[image: PDFReport2]

	The Font tag and its related parent tags

	[image: PDFReport5]

	The Style tag and its children

	

	

	The Column tag and its children for a button-specific file (left) and other .word file (right).

Here are the appropriate values you can use in the XML tags:
	Parameter
(Tag / Node)
	Where Used
(Parent Node)
	Values

	PageHeight
	Report
	Specifies the report’s page height.
	CulturalDefaultForLandscape
	Apply either 8.5in or 210mm as the page height according to the culture.

	CulturalDefaultForPortrait
	Apply either 11in or 297mm as the page height according to the culture.

	Decimal number
	Specifies the page height as a decimal number. The units of measure are “pt”, “cm”, and “mm”.

Default value is CulturalDefaultForLandscape.

	PageWidth
	Report
	Specifies the report’s page width.
	CulturalDefaultForLandscape
	Apply either 11in or 297mm as the page width according to the culture.

	CulturalDefaultForPortrait
	Apply either 8.5in or 210mm as the page width according to the culture.

	Decimal number
	Specifies the page width in decimal number. The units of measure are “pt”, “cm”, and “mm”.

Default value is CulturalDefaultForLandscape.

	LeftMargin
	Report
	Specifies the report’s left margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	RightMargin
	Report
	Specifies the report’s right margin as a decimal number
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	TopMargin
	Report
	Specifies the report’s top margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	BottomMargin
	Report
	Specifies the report’s bottom margin as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 in.

	Top
	BorderWidth
	Specifies the top border’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Top
	Padding
	Specifies the top padding height as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Top
	BorderColor
	Specifies the top border’s color as a 6 digit hex number.
Default value is ffffff.

	Top
	PageHeader
	Decimal number represents the distance between the top edge of the page and the top of the page header.
The units of measure are “pt”, “cm”, and “mm”. “pt” is the default unit of measure if none is specified.
Default value is 1 pt.

	Bottom
	BorderWidth
	Specifies the bottom borders’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Bottom
	Padding
	Specifies the bottom padding as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Bottom
	BorderColor
	Specifies the bottom borders’s color as a 6 digit hex number.
Default value is ffffff.

	Bottom
	PageFooter
	Specifies the distance between the bottom edge of the page and the bottom of the page footer as a decimal number. “pt” is default units.
The units of measure are “pt”, “cm”, and “mm”. “pt” is the default unit of measure if none is specified.
Default value is 1 pt.

	Left
	BorderWidth
	Specifies the left border width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Left
	Padding
	Specifies the left padding size as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Left
	BorderColor
	Specifies the left border’s color as a 6 digit hex number.
Default value is ffffff.

	Right
	BorderWidth
	Specifies the right border’s width as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 0.5 pt.

	Right
	Padding
	Specifies the right padding size as a decimal number.
The units of measure are “pt”, “cm”, and “mm”.
Default value is 1 pt.

	Right
	BorderColor
	Specifies the right border’s color as a 6 digit hex number.
Default value is ffffff.

	Color
	Font
	Specifies the color of the body text font.
The color code is a 6 digit hex number.
Default value is ffffff.

	BackgroundColor
	Style
AltStyle
	Specifies the background color as a 6 digit hex number.
Default value is 000000.

	Italic
	Font
		True
	Display the text in italics.

	False
	Do not display the text in italics.

Default value is False.

	Bold
	Font
		True
	Display the text as boldface.

	False
	Do not display the text as boldface.

Default value is False.

	Underline
	Font
		True
	Display the text as underlined.

	False
	Do not display the text as underlined.

Default value is False.

	TextDirection
	Font
		LeftToRight
	Display the text from left to right on the page.

	RightToLeft
	Display the text from right to left on the page.

	LanguageDefault
	Display the text based on the language or cultural default.

Default value is LanguageDefault.

	Encoding
	Font
		Unicode
	Encode the text using Unicode encoding.

	None
	Do not Unicode encode the text.

Default value is Unicode.

	FileName
	Font
	Specifies the True Type font used for the report text. True Type font files have a “ttf” extension. These files are located in the “fonts” folder under the Microsoft Windows installation directory.
Iron Speed Designer only supports True Type fonts, so Chinese, Japanese, or Korean (CJK) characters can not be used in the report.
Note: When Unicode is applied, some font files cannot be used. For example, Arial supports all non-CJK (Chinese, Japanese, and Korean) strings such as Hebrew or German, but Verdana does not support Unicode.
Default value is Arial.ttf

	VerticalAlign
	Style
		Top
	

	Bottom
	

	Middle
	

	Center
Middle
	Middle and Center are identical.

Iron Speed Designer only supports “Top” alignment for column text.
Default value is Top.

	HorizontalAlign
	Style
		Top
	

	Bottom
	

	Middle
	

	Center
Middle
	Middle and Center are identical.

Default value is Default.

	Size
	Font
	Specifies the size of the body text font as a decimal height in points (“pt”). “pt” is unit of measure.
Default value is 8 pt.

	Value
	LeftHeader
LeftFooter
RightHeader
RightFooter
CenterHeader
CenterFooter
Header
Detail
	Specifies the text to be displayed in the page header, page footer, and table detail.
Default value is an empty string.

	ReportDirection
	Report
		LeftToRight
	Display the columns from left to right on the page.

	RightToLeft
	Display the columns from right to left on the page. If RightToLeft is chosen, columns’ order is ‘reversed’ from most European languages, which display left to right. Also, the left and right alignments are swapped throughout the report.

	LanguageDefault
	Display the text based on the language or cultural default.

Default value is LanguageDefault.

	Width
	Column
	Specifies the column width as a relative width of the column. The actual column width is prorated based on the widths of all of the columns included in the page and the report’s page width.
Default value is 100.

Applying properties specified in .word configuration files
When an application user clicks a “Microsoft Word report” button in your application, it reads and applies the .word files in this order:
1. Button-specific configuration file (e.g., ShowEmployeesTable.EmployeesWordButton.word)
2. Culture-specific configuration file (e.g., WordReport.en-CA.word)
3. Language-specific configuration file (e.g., WordReport.en.word)
4. Page style-specific configuration file (e.g., WordReport.word)
Let’s assume you have specified at least one column in the button-specific configuration file. While a report is created, your application attempts to apply the properties specified in the button-specific configuration file. If some properties are not available, it will then look for the missing properties in the culture-specific configuration file. If some are also not available in that file, it will look in the language-specific configuration file. Finally, if they are not specified in the language-specific configuration file, it will find them in the page style-specific configuration file. If a property is not specified in any of these files, then default properties will be used.
The properties specified in the button-specific configuration file have the highest priority. If their properties are specified in the right format, they can override properties specified in the other files. If the properties are inappropriate, for example, the color codes are not six digit hex numbers, they will be discarded.
The following example illustrates how to override various properties in the .word files.
WordReport.word:
<Columns>
	<Column>
		<Header>
			<Style>
				
					<Color>ffffff</Color>
					<Size>7pt</Size>
					<FileName>Arial.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<Color>000000</Color>
					<Size>7pt</Size>
					<FileName>Verdana.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
			
		</Detail>
	</Column>
</Columns>
WordReport.en.word:
<Columns>
	<Column>
		<Header>
			<Style>
				
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
				
			</Style>
			
			<AltStyle>
				<FontColor>000000</FontColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
Word.en-CA.word:
<Columns>
	<Column>
		<Header>
			<Style>
				
					<Color>ffffff</Color>
					<FileName>Ariaal.ttf</FileName>
					<Underline>True</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Style>
				
					<FileName>Arial.ttf</FileName>
				
			</Style>
			
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
ShowEmployeesTable.EmployeesWordButton.word:
<Columns>
	<Column>
		<Width>100</Width>
		<Header>
			<Value>First Name</Value>
		</Header>
		<Detail>
			<Value>${Customers.FirstName}</Value>
			<Style>
				
					<Size>7pt</Size>
				
			</Style>
		</Detail>
	</Column>
<Column>
		<Width>100</Width>
		<Header>
			<Value>Last Name</Value>
			<Style>
				
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.LastName}</Value>
			<Style>
				
					<Color>0000</Color>
				
			</Style>
		</Detail>
	</Column>
</Columns>
Overridden result:
<Columns>
	<Column>
		<Width>100</Width>
		<Header>
			<Value>First Name</Value>
			<Style>
				
					<Color>ffffff</Color>
					<Underline>True</Underline>
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
					<Color>ffffff</Color>
					<Bold>False</Bold>
					<Italic>False</Italic>
					<Underline>False</Underline>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.FirstName}</Value>
			<Style>
				
					<Size>7pt</Size>
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
					<Color>000000</Color>
					<Size>7pt</Size>
					<Bold>False</Bold>
					<Underline>False</Underline>
				
			</Style>
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
<Column>
		<Width>100</Width>
		<Header>
			<Value>Last Name</Value>
			<Style>
				
					<Color>ffffff</Color>
					<Underline>True</Underline>
					<Size>9pt</Size>
					<FileName>Arial.ttf</FileName>
					<Bold>False</Bold>
					<Italic>False</Italic>
				
			</Style>
		</Header>
		<Detail>
			<Value>${Customers.LastName}</Value>
			<Style>
				
					<FileName>Arial.ttf</FileName>
					<Italic>False</Italic>
					<Color>000000</Color>
					<Size>7pt</Size>
					<Bold>False</Bold>
					<Underline>False</Underline>
				
			</Style>
			<AltStyle>
				<FontColor>000000</FontColor>
				<BackgroundColor>ac0212</BackgroundColor>
			</AltStyle>
		</Detail>
	</Column>
</Columns>
In the example, the button-specific configuration file contains two Column tags. Each Column tag specifies properties for a particular column. However, the other .word files can specify one Column tag only because the properties specified in this tag are shared by all columns. How can the button-specific configuration file override the other .word files? When your application determines the overridden result, Column tags in the first three files are cloned to the amount matching the button-specific configuration file. Then your application searches the appropriate values from the button-specific configuration file to the page style-specific configuration file in order to produce the overridden result. If a .word file is missing or was not written in the appropriate XML format, your application will move on to the next file in the hierarchy.
[bookmark: _Ref189569876][bookmark: _Toc412569578][bookmark: _Toc414866281]Text Substitution Parameters for Titles, Headers, Footers and Columns
Several text substitution parameters are available for customizing your report’s title, page header and page footer.
	Text Substitution Parameter
	Description

	${ReportTitle}
	A report title specified in the page’s code-behind file.
For details, see Customizing Microsoft Word Report Code.

	${PageLabel}
	A page label specified in the “Txt:Page” resource in your application’s resource file (RESX).
Your application’s resource file is located in:
App_GlobalResources\<App Name>.resx

	${PageNum}
	An automatically incrementing page number. The first page is numbered “1”, the second page is “2” and so forth.

	${Date:?)
	A date or time where “?” is a letter indicating the .NET date and time format.
For more information, visit:
http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.71).aspx

These substitution parameters are typically used in the following context:
<Footer>
	<Value>${PageNum}</Value>
</Footer>
There are several caveats.
Column headers do not accept any substitution parameters.
For the column detail, the available substitution parameters are specified in the AddData() function calls in the page’s code-behind file. For example:
report.AddData ("${Customers.CustomerID}",
	record.Format(CustomersTable.CustomerID),
	ReportEnum.Align.Left,
	100)
The available substitution parameter is "${Customers.CustomerID}" representing the value of the CustomerID in each row.
In the column detail, you can use
<Value>${Customers.LastName}, {Customers.FirstName}</Value>
Finally, if there is no column specified in the button-specific configuration file, your application will still read the .word files. However, the table is created according to the AddColumn function calls in the page’s code-behind file.
[bookmark: _Ref189569877][bookmark: _Toc412569579][bookmark: _Toc414866282]Microsoft Word Report Alignment Configuration
If a button-specific configuration file specifies at least one column, the table cells will be formatted according to the button-specific configuration file. If the button-specific configuration file does not specify any columns, the column cells will be laid out by the AddColumn function calls in the page’s code-behind file.
Column layout using button-specific configuration files
By way of example, if the overridden property for horizontal alignment is “Left”, “Right”, “Center”, or “Middle”, the text will be aligned accordingly. However, if it is “Default”, the horizontal alignment will be determined by the parameters specified in the AddData function calls in the page’s code-behind file. The following example illustrates this.
Overridden properties from the .word files are:
<Column>
	<Header>
		<Value>Postal Code</Value>
		<Style>
			<HorizontalAlign>Default</HorizontalAlign >
		</Style>
	</Header>
	<Detail>
		<Value>${Customers.PostalCode}</Value>
		<Style>
			<HorizontalAlign>Default</HorizontalAlign >
		</Style>
	</Detail>
</Column>
AddData function call in the page’s code-behind file:
report.AddData("${Customers.PostalCode}",
	record.Format (CustomersTable.PostalCode),
	ReportEnum.Align.Left,
	100)
To determine the horizontal alignment for the column header and column detail, your application looks at the Header and Detail tags for the column detail. In this example, the Value tag contains the “${Customers.PostalCode}” substitution parameter. Your application determines the default horizontal alignment for “${Customers.PostalCode}”. The third parameter of the AddData function call tells your application the default horizontal alignment is “left”, so left alignment is applied to the column header and column detail. Since your application determines horizontal alignment for both the column header and column detail using the same Value tag, column headers and column bodies are always have the same default horizontal alignment.
If the Value tag specifies several substitution parameters or other strings, the horizontal alignment will be “left” regardless the parameters specified in the AddData function calls. For example:
· ${Customers.ContactName}\r\n${Customers.Address}\r\n${Customers.City} ${Customers.State}, ${Customers. PostalCode }
· CA ${Customers.PostalCode}
· California
However, if the overridden ReportDirection property is “True”, horizontal alignment for the entire report will be swapped.
Customizing report layout with AddColumn function calls
Column headers and column bodies can be controlled via the AddColumn function calls in the page’s code-behind file, for example:
report.AddColumn(CustomersTable.CustomerID.Name,
	ReportEnum.Align.Center,
	"${Customers.CustomerID}",
	ReportEnum.Align.Left, 15)
The second parameter specifies the horizontal alignment for the column header. The forth parameter specifies the horizontal alignment for the column detail. However, keep in mind that if the overridden ReportDirection property is ‘True’, horizontal alignment for the entire report will be swapped.
Horizontal alignment of page headers and footers
The left of page header and footer are aligned to the left. The center of page header and footer are aligned to the middle. The right of page header and footer are aligned to the right. Keep in mind that if the overridden property of ReportDirection is true, horizontal alignments for the whole report will be swapped in all circumstances. In addition, the left of page header and footer are shown on the right side. The right page header and footer are shown on the left side.
[bookmark: _Ref189569878][bookmark: _Toc412569580][bookmark: _Toc414866283]Microsoft Word Report Language and Culture-Based Configuration
When a Microsoft Word report button is clicked, your application creates a report based on the session’s culture and language. For example, if they are French (Canada), your application determines the overridden properties from WordReport.fr.word and ReportDefault.fr-CA.word report configuration files. These overridden properties may be specified with cultural or language dependent values. In this situation, your application applies the substitution values.
PageHeight
	Culture
	Cultural Dependent Value
	Substitution

	Canada or the U.S
	CulturalDefaultForLandscape
	11 in

	Other culture
	CulturalDefaultForLandscape
	297 mm (A4 size)

	Canada or the U.S
	CulturalDefaultForProtrait
	8.5 in

	Other culture
	CulturalDefaultForProtrait
	210 mm (A4 size)

PageWidth
	Culture
	Cultural Dependent Value
	Substitution

	Canada or the U.S
	CulturalDefaultForLandscape
	297 mm (A4 size)

	Other culture
	CulturalDefaultForLandscape
	11 in

	Canada or the U.S
	CulturalDefaultForPortrait
	210 mm (A4 size)

	Other culture
	CulturalDefaultForPortrait
	8.5 in

ReportDirection
	Language
	Cultural Dependent Value
	Substitution

	Language with left to right text direction
	LanguageDefault
	LeftToRight

	Language with right to left text direction
	LanguageDefault
	RightToLeft

TextDirection
	Language
	Cultural Dependent Value
	Substitution

	Language with left to right text direction
	LanguageDefault
	LeftToRight

	Language with right to left text direction
	LanguageDefault
	RightToLeft

[bookmark: _Ref189569879][bookmark: _Toc412569581][bookmark: _Toc414866284]Customizing Microsoft Word Report Code
You can rearrange columns, change column alignments and other aspects of your report by overriding and customizing the report code in the report’s button click handler method located in:
<App Name>\App_Code\<Table Name>\Show<Table Name>Table.Controls.cs or .vb
For example:
...\MyApp\App_Code\Customers\ShowCustomersTable.Controls.cs
Here is an example of report code for the ShowCustomersTable.aspx page.
C#:
public virtual void CustomersWordButton_Click(object sender, ImageClickEventArgs args)
{
	try {
		DbUtils.StartTransaction();
		WordReport report = new WordReport();
		report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersWordButton.word");
		report.Title = "Customers";
		report.AddColumn(CustomersTable.CustomerID.Name, ReportEnum.Align.Left, "${CustomersTable.CustomerID.Name}",
			ReportEnum.Align.Left, 15);
		report.AddColumn(CustomersTable.CompanyName.Name, ReportEnum.Align.Left,
			"${CustomersTable.CompanyName.Name}", ReportEnum.Align.Left, 28);
		report.AddColumn(CustomersTable.ContactTitle.Name, ReportEnum.Align.Left, "${CustomersTable.ContactTitle.Name}",
			ReportEnum.Align.Left, 24);

		WhereClause whereClause = CreateWhereClause();
		OrderBy orderBy = CreateOrderBy();
		int rowsPerQuery = 1000;
		int pageNum = 0;
		int recordCount = 0;
		int totalRecords = CustomersTable.GetRecordCount(whereClause);

		report.Page = Page.GetResourceValue("Txt:Page", "MyApp31");
		report.ApplicationPath = this.Page.MapPath(Page.Request.ApplicationPath);

		ColumnList columns = CustomersTable.GetColumnList();
		CustomersRecord[] records = null;
		do
		{
			records = CustomersTable.GetRecords(whereClause, orderBy, pageNum, rowsPerQuery);
			if (records != null && records.Length > 0)
			{
				foreach (CustomersRecord record in records)
				{
					report.AddData("${CustomersTable.CustomerID.Name}", record.Format(CustomersTable.CustomerID),
						ReportEnum.Align.Left);
					report.AddData("${CustomersTable.CompanyName.Name}", record.Format(CustomersTable.CompanyName),
						 ReportEnum.Align.Left, 100);
					report.AddData("${CustomersTable.ContactTitle.Name}", record.Format(CustomersTable.ContactTitle),
						ReportEnum.Align.Left, 100);

					report.WriteRow();
				}
				pageNum++;
				recordCount += records.Length;
			}
		}
		while (records != null && recordCount < totalRecords);
		report.save();
		BaseClasses.Utils.NetUtils.WriteResponseBinaryAttachment(this.Page.Response, report.Title + ".doc",
			report.wordInByteArray, 0, true);
		this.Page.CommitTransaction(sender);
	} catch (Exception ex) {
		this.Page.RollBackTransaction(sender);
		this.Page.ErrorOnPage = true;

		BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);
	} finally {
		DbUtils.EndTransaction();
	}
}
Visual Basic .NET:
Public Overridable Sub CustomersWordButton_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)

	Try
		Dim report As WordReport = New WordReport
		report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersWordButton.word")
		report.Title = "Customers"

		report.AddColumn(CustomersTable.CustomerID.Name, ReportEnum.Align.Center, "${Customers.CustomerID}",
			ReportEnum.Align.Left, 15)
		report.AddColumn(CustomersTable.CompanyName.Name, ReportEnum.Align.Center, "${Customers.CompanyName}",
			ReportEnum.Align.Left, 28)
		report.AddColumn(CustomersTable.ContactName.Name, ReportEnum.Align.Center, "${Customers.ContactName}",
			ReportEnum.Align.Left, 24)
		report.AddColumn(CustomersTable.ContactTitle.Name, ReportEnum.Align.Center, "${Customers.ContactTitle}",
			ReportEnum.Align.Left, 24)
		Dim whereClause As WhereClause = CreateWhereClause
		Dim orderBy As OrderBy = CreateOrderBy
		Dim rowsPerQuery As Integer = 1000
		Dim pageNum As Integer = 0
		Dim recordCount As Integer = 0
		Dim totalRecords As Integer = CustomersTable.GetRecordCount(whereClause)

		report.Page = Page.GetResourceValue("Txt:Page", "MyApp144")
		report.ApplicationPath = Me.Page.MapPath(Page.Request.ApplicationPath)

		Dim columns As ColumnList = CustomersTable.GetColumnList()
		Dim records As CustomersRecord() = Nothing
		Do
			records = CustomersTable.GetRecords(whereClause, orderBy, pageNum, rowsPerQuery)
			If Not (records Is Nothing) AndAlso records.Length > 0 Then
				For Each record As CustomersRecord In records

				report.AddData("${Customers.CustomerID}", record.Format(CustomersTable.CustomerID),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.CompanyName}", record.Format(CustomersTable.CompanyName),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.ContactName}", record.Format(CustomersTable.ContactName),
					ReportEnum.Align.Left, 100)
				report.AddData("${Customers.ContactTitle}", record.Format(CustomersTable. ContactTitle),
					ReportEnum.Align.Left, 100)
				report.WriteRow
			Next
			System.Math.Min(System.Threading.Interlocked.Increment(pageNum), pageNum-1)
			recordCount += records.Length
			End If
		Loop While Not (records Is Nothing) AndAlso recordCount < totalRecords
		report.save
		BaseClasses.Utils.NetUtils.WriteResponseBinaryAttachment(Me.Page.Response,
			report.Title + ".doc", report.wordInByteArray, 0, true)
		Me.Page.CommitTransaction(sender)
	Catch ex As Exception
		Me.Page.RollBackTransaction(sender)
 		Me.Page.ErrorOnPage = True
		Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)
	Finally
		DbUtils.EndTransaction
	End Try
End Sub
The following sections discuss several aspects of the report generation code that are frequently customized.
The AddData function call
The AddData() function supplies data to the report. AddData calls are generally followed by WriteRow function calls to write the data to the Microsoft Word report. AddData()’s parameters are:
· Substitution parameter
· Data to be exported
· Default horizontal alignment for the supplied data
· Maximum length of the data to be exported
The AddColumn function call
The AddColumn function specifies the column layout. AddColumn() is called once for each column in the report.: AddColumn()’s parameters are:
· Column header text
· Horizontal alignment of the column header
· Column Detail contained in the substitution parameter
· Horizontal alignment of the column detail
· Relative column width
In the example above, the first AddColumn() call uses "${Customers.CustomerID}" for the column detail. This means that the first column displays whatever text is supplied by the first AddData() call because they both have the same substitution parameter, "${Customers.CustomerID}".
You can also use a combination of substitution parameters. For example, to create a column with the following format:
[ContactName]
[Address]
[City], [State] [PostalCode]
Your AddColumn() calls should take the following as the third parameter:
"${Customers.ContactName}\r\n${Customers.Address}\r\n${Customers.City} ${Customers.State}, ${Customers. PostalCode }"
Notice that “\r\n” represents a new line.
Button-specific configuration file paths
In the example code, you can see:
report.SpecificReportFileName = Page.Server.MapPath("ShowCustomersTable.CustomersWordButton.word")
This code specifies the location of a button-specific configuration file. If this file specifies a table with at least one column, your application will not use the column layout provided by the AddColumn function and instead will use the column layout provided by the button-specific configuration file.
ReportDirection
Keep in mind if the overridden property of ReportDirection is RightToLeft, the horizontal alignments and the column order will be swapped. Therefore, the column specifies by the first AddColumn call displays on the right side, and the column specifies by the last AddColumn function call displays on the left side.
See Customizing Microsoft Word Report Configuration Files for information regarding to overridden properties.
[bookmark: _Ref173144361][bookmark: _Toc412569582][bookmark: _Toc414866285]Export to Excel Customization
Iron Speed Designer applications allow data export to Microsoft Excel files. When application users click the Export to Excel button located in Table Report panels, the application displays the contents of the table control in an Excel file. Iron Speed Designer utilizes a third-party DLL, CarlosAg.ExcelXmlWriter, to create an Excel spreadsheet and display the columns in a standard Excel display format.
You can easily customize the display format and the order in which the columns are exported to the Excel file by overriding the button click method in the page’s code-behind file, located in:
<App Name>\App_Code\<Table Name>\Show<Table Name>Table.Controls.cs or .vb
For example:
...\MyApp\App_Code\Customers\ShowOrdersTable.Controls.cs
Here is a code example for the ShowOrdersTable.aspx page.
C#:
 // Event handler for ImageButton .
 public virtual void OrdersExportExcelButton_Click(object sender, ImageClickEventArgs args)
 {

 try {
 // Enclose all database retrieval/update code within a Transaction boundary
 DbUtils.StartTransaction();

 // To customize the columns or the format, override this function in Section 1 of the page
 // and modify it to your liking.
 // Build the where clause based on the current filter and search criteria
 // Create the Order By clause based on the user's current sorting preference.

 WhereClause wc = null;
 wc = CreateWhereClause();
 OrderBy orderBy = null;

 orderBy = CreateOrderBy();

 // Create an instance of the ExportDataToExcel class with the table class, where clause and order by.
 ExportDataToExcel excelReport = new ExportDataToExcel(OrdersTable.Instance, wc, orderBy);
 // Add each of the columns in order of export.
 // To customize the data type, change the second parameter of the new ExcelColumn to be
 // a format string from Excel's Format Cell menu. For example "dddd, mmmm dd, yyyy h:mm AM/PM;@", "#,##0.00"

 bool done = false;
 string val;

 if (this.Page.Response == null)
 return;

 excelReport.CreateExcelBook();

 int width = 0;
 int columnCounter = 0;

 DataForExport data = new DataForExport(OrdersTable.Instance, wc, orderBy, null);
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CustomerID, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.EmployeeID, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.OrderDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.RequiredDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShippedDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipVia, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.Freight, "$#,##0.00;($#,##0.00)"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipName, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipAddress, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipCity, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipRegion, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipPostalCode, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipCountry, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CreatedBy, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CreatedOn, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.UpdatedBy, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.UpdatedOn, "Short Date"));

 // First write out the Column Headers
 foreach (ExcelColumn col in data.ColumnList)
 {
 width = excelReport.GetExcelCellWidth(col);
 if (data.IncludeInExport(col))
 {
 excelReport.AddColumnToExcelBook(columnCounter, col.ToString(), excelReport.GetExcelDataType(col), width, excelReport.GetDisplayFormat(col));
 columnCounter++;
 }
 }
 // Read pageSize records at a time and write out the Excel file.
 int totalRowsReturned = 0;

 while (!done)
 {
 ArrayList recList = data.GetRows(excelReport.pageSize);

 foreach (BaseRecord rec in recList)
 {
 excelReport.AddRowToExcelBook();
 columnCounter = 0;
 foreach (ExcelColumn col in data.ColumnList)
 {
 if (!data.IncludeInExport(col))
 continue;

 if (col.DisplayColumn.TableDefinition.IsExpandableNonCompositeForeignKey(col.DisplayColumn))
 val = OrdersTable.GetDFKA(rec.GetValue(col.DisplayColumn).ToString(), col.DisplayColumn, null);
 else
 val = excelReport.GetValueForExcelExport(col, rec);
 excelReport.AddCellToExcelRow(columnCounter, excelReport.GetExcelDataType(col), val);

 columnCounter++;
 }
 }

 // If we already are below the pageSize, then we are done.
 if (totalRowsReturned < excelReport.pageSize)
 {
 done = true;
 }
 }
 excelReport.SaveExcelBook(this.Page.Response);

 this.Page.CommitTransaction(sender);

 } catch (Exception ex) {
 // Upon error, rollback the transaction
 this.Page.RollBackTransaction(sender);
 this.Page.ErrorOnPage = true;

 // Report the error message to the end user
 BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);

 } finally {
 DbUtils.EndTransaction();
 }

 }
Visual Basic .NET:
' event handler for ImageButton
 Public Overridable Sub CustomersExportExcelButton_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)

 Try
 ' Enclose all database retrieval/update code within a Transaction boundary
 DbUtils.StartTransaction

 ' To customize the columns or the format, override this function in Section 1 of the page
 ' and modify it to your liking.
 ' Build the where clause based on the current filter and search criteria
 ' Create the Order By clause based on the user's current sorting preference.

 Dim wc As WhereClause = CreateWhereClause
 Dim orderBy As OrderBy = Nothing

 orderBy = CreateOrderBy

 ' Create an instance of the Excel report class with the table class, where clause and order by.
 Dim excelReport As ExportDataToExcel = New ExportDataToExcel(CustomersTable.Instance, wc, orderBy)
 ' Add each of the columns in order of export.
 ' To customize the data type, change the second parameter of the new ExcelColumn to be
 ' a format string from Excel's Format Cell menu. For example "dddd, mmmm dd, yyyy h:mm AM/PM;@", "#,##0.00"
 Dim done As Boolean = False
 Dim val As String
 excelReport.CreateExcelBook()

 Dim width As Integer = 0
 Dim columnCounter As Integer = 0
 Dim data As DataForExport = New DataForExport(CustomersTable.Instance, wc, orderBy, Nothing)
 data.ColumnList.Add(New ExcelColumn(CustomersTable.CustomerID, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.CompanyName, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.ContactName, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.EmailAddress, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.ContactTitle, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Address, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.City, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Region, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.PostalCode, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Country, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Phone, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Fax, "Default"))

 For Each col As ExcelColumn In data.ColumnList
 width = excelReport.GetExcelCellWidth(col)
 If data.IncludeInExport(col) Then
 excelReport.AddColumnToExcelBook(columnCounter, col.ToString(), excelReport.GetExcelDataType(col), width, excelReport.GetDisplayFormat(col))
 columnCounter = columnCounter + 1
 End If
 Next col

 ' Read pageSize records at a time and write out the Excel file.
 Dim totalRowsReturned As Integer = 0

 While (Not done)
 Dim recList As ArrayList = data.GetRows(excelReport.pageSize)

 For Each rec As BaseRecord In recList
 excelReport.AddRowToExcelBook()
 columnCounter = 0

 For Each col As ExcelColumn In data.ColumnList
 If Not data.IncludeInExport(col) Then
 Continue For
 End If

 If col.DisplayColumn.TableDefinition.IsExpandableNonCompositeForeignKey(col.DisplayColumn) Then
 val = CustomersTable.GetDFKA(rec.GetValue(col.DisplayColumn).ToString(), col.DisplayColumn, Nothing)
 Else
 val = excelReport.GetValueForExcelExport(col, rec)
 End If
 excelReport.AddCellToExcelRow(columnCounter, excelReport.GetExcelDataType(col), val)

 columnCounter = columnCounter + 1
 Next col
 Next rec

 ' If we already are below the pageSize, then we are done.
 If totalRowsReturned < PageSize Then
 done = True
 End If
 End While

 excelReport.SaveExcelBook(Me.Page.Response)

 Me.Page.CommitTransaction(sender)

 Catch ex As Exception
 ' Upon error, rollback the transaction
 Me.Page.RollBackTransaction(sender)
 Me.Page.ErrorOnPage = True

 ' Report the error message to the end user
 Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)
 Finally
 DbUtils.EndTransaction
 End Try

 End Sub
The AddColumn method specifies the layout for each column and can be customized in order to modify the display format of each column and the order in which the columns of a particular database table are exported to the Excel file.
[bookmark: _Ref173144245][bookmark: _Toc412569583][bookmark: _Toc414866286]Customizing the AddColumn Method
The AddColumn method specifies the layout for each column. AddColumn() is called once for each column in the table and specifies:
· Column header text
· Display format of the column
By default, Iron Speed Designer specifies Microsoft Excel’s standard display format for each column. For example, the format specified for date fields is “Short Date”, the format for Currency fields is “Standard” and the format for String fields is ‘Default’.
You can alter the default format and specify a custom value for the display format of a column. Formats can be culture-specific. The order in which the columns are exported can be customized as well.
Step 1: Copy the entire overridable button click handler method (“button_click”) from Section 2 of the page’s table control class and paste it in Section 1 of the same class in the page.
Step 2: Change the ‘virtual’ keyword to ‘override’ if the application is in C# or change the ‘Overridable’ keyword to ‘Overrides’ if the application is in Visual Basic .NET and, e.g.:
C#:
public override void OrdersExportExcelButton_Click(object sender, ImageClickEventArgs args)
Visual Basic .NET:
Public Overrides Sub CustomersExportExcelButton_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)
Step 3: Choose any of the standard display formats accepted by Microsoft Excel. To view the data formats supported by Microsoft Excel, open any Excel file, right-click on a cell and choose the Format Cells option.
[image:]
Step 4: Specify the desired format for the column in the overridden button click handler method in Section 1, as shown in the example below. You can also alter the order in which the columns are exported.
C#:
 // Event handler for ImageButton .
 public virtual void OrdersExportExcelButton_Click(object sender, ImageClickEventArgs args)
 {

 try {
 // Enclose all database retrieval/update code within a Transaction boundary
 DbUtils.StartTransaction();

 // To customize the columns or the format, override this function in Section 1 of the page
 // and modify it to your liking.
 // Build the where clause based on the current filter and search criteria
 // Create the Order By clause based on the user's current sorting preference.

 WhereClause wc = null;
 wc = CreateWhereClause();
 OrderBy orderBy = null;

 orderBy = CreateOrderBy();

 // Create an instance of the ExportDataToExcel class with the table class, where clause and order by.
 ExportDataToExcel excelReport = new ExportDataToExcel(OrdersTable.Instance, wc, orderBy);
 // Add each of the columns in order of export.
 // To customize the data type, change the second parameter of the new ExcelColumn to be
 // a format string from Excel's Format Cell menu. For example "dddd, mmmm dd, yyyy h:mm AM/PM;@", "#,##0.00"

 bool done = false;
 string val;

 if (this.Page.Response == null)
 return;

 excelReport.CreateExcelBook();

 int width = 0;
 int columnCounter = 0;

 DataForExport data = new DataForExport(OrdersTable.Instance, wc, orderBy, null);
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CustomerID, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.EmployeeID, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.OrderDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.RequiredDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShippedDate, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipVia, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.Freight, "$#,##0.00;($#,##0.00)"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipName, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipAddress, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipCity, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipRegion, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipPostalCode, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.ShipCountry, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CreatedBy, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.CreatedOn, "Short Date"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.UpdatedBy, "Default"));
 data.ColumnList.Add(new ExcelColumn(OrdersTable.UpdatedOn, "Short Date"));

 // First write out the Column Headers
 foreach (ExcelColumn col in data.ColumnList)
 {
 width = excelReport.GetExcelCellWidth(col);
 if (data.IncludeInExport(col))
 {
 excelReport.AddColumnToExcelBook(columnCounter, col.ToString(), excelReport.GetExcelDataType(col), width, excelReport.GetDisplayFormat(col));
 columnCounter++;
 }
 }
 // Read pageSize records at a time and write out the Excel file.
 int totalRowsReturned = 0;

 while (!done)
 {
 ArrayList recList = data.GetRows(excelReport.pageSize);

 foreach (BaseRecord rec in recList)
 {
 excelReport.AddRowToExcelBook();
 columnCounter = 0;
 foreach (ExcelColumn col in data.ColumnList)
 {
 if (!data.IncludeInExport(col))
 continue;

 if (col.DisplayColumn.TableDefinition.IsExpandableNonCompositeForeignKey(col.DisplayColumn))
 val = OrdersTable.GetDFKA(rec.GetValue(col.DisplayColumn).ToString(), col.DisplayColumn, null);
 else
 val = excelReport.GetValueForExcelExport(col, rec);
 excelReport.AddCellToExcelRow(columnCounter, excelReport.GetExcelDataType(col), val);

 columnCounter++;
 }
 }

 // If we already are below the pageSize, then we are done.
 if (totalRowsReturned < excelReport.pageSize)
 {
 done = true;
 }
 }
 excelReport.SaveExcelBook(this.Page.Response);

 this.Page.CommitTransaction(sender);

 } catch (Exception ex) {
 // Upon error, rollback the transaction
 this.Page.RollBackTransaction(sender);
 this.Page.ErrorOnPage = true;

 // Report the error message to the end user
 BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this, "BUTTON_CLICK_MESSAGE", ex.Message);

 } finally {
 DbUtils.EndTransaction();
 }

 }
Visual Basic .NET:
' event handler for ImageButton
 Public Overridable Sub CustomersExportExcelButton_Click(ByVal sender As Object, ByVal args As ImageClickEventArgs)

 Try
 ' Enclose all database retrieval/update code within a Transaction boundary
 DbUtils.StartTransaction

 ' To customize the columns or the format, override this function in Section 1 of the page
 ' and modify it to your liking.
 ' Build the where clause based on the current filter and search criteria
 ' Create the Order By clause based on the user's current sorting preference.

 Dim wc As WhereClause = CreateWhereClause
 Dim orderBy As OrderBy = Nothing

 orderBy = CreateOrderBy

 ' Create an instance of the Excel report class with the table class, where clause and order by.
 Dim excelReport As ExportDataToExcel = New ExportDataToExcel(CustomersTable.Instance, wc, orderBy)
 ' Add each of the columns in order of export.
 ' To customize the data type, change the second parameter of the new ExcelColumn to be
 ' a format string from Excel's Format Cell menu. For example "dddd, mmmm dd, yyyy h:mm AM/PM;@", "#,##0.00"
 Dim done As Boolean = False
 Dim val As String
 excelReport.CreateExcelBook()

 Dim width As Integer = 0
 Dim columnCounter As Integer = 0
 Dim data As DataForExport = New DataForExport(CustomersTable.Instance, wc, orderBy, Nothing)
 data.ColumnList.Add(New ExcelColumn(CustomersTable.CustomerID, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.CompanyName, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.ContactName, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.EmailAddress, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.ContactTitle, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Address, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.City, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Region, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.PostalCode, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Country, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Phone, "Default"))
 data.ColumnList.Add(New ExcelColumn(CustomersTable.Fax, "Default"))

 For Each col As ExcelColumn In data.ColumnList
 width = excelReport.GetExcelCellWidth(col)
 If data.IncludeInExport(col) Then
 excelReport.AddColumnToExcelBook(columnCounter, col.ToString(), excelReport.GetExcelDataType(col), width, excelReport.GetDisplayFormat(col))
 columnCounter = columnCounter + 1
 End If
 Next col

 ' Read pageSize records at a time and write out the Excel file.
 Dim totalRowsReturned As Integer = 0

 While (Not done)
 Dim recList As ArrayList = data.GetRows(excelReport.pageSize)

 For Each rec As BaseRecord In recList
 excelReport.AddRowToExcelBook()
 columnCounter = 0

 For Each col As ExcelColumn In data.ColumnList
 If Not data.IncludeInExport(col) Then
 Continue For
 End If

 If col.DisplayColumn.TableDefinition.IsExpandableNonCompositeForeignKey(col.DisplayColumn) Then
 val = CustomersTable.GetDFKA(rec.GetValue(col.DisplayColumn).ToString(), col.DisplayColumn, Nothing)
 Else
 val = excelReport.GetValueForExcelExport(col, rec)
 End If
 excelReport.AddCellToExcelRow(columnCounter, excelReport.GetExcelDataType(col), val)

 columnCounter = columnCounter + 1
 Next col
 Next rec

 ' If we already are below the pageSize, then we are done.
 If totalRowsReturned < PageSize Then
 done = True
 End If
 End While

 excelReport.SaveExcelBook(Me.Page.Response)

 Me.Page.CommitTransaction(sender)

 Catch ex As Exception
 ' Upon error, rollback the transaction
 Me.Page.RollBackTransaction(sender)
 Me.Page.ErrorOnPage = True

 ' Report the error message to the end user
 Utils.MiscUtils.RegisterJScriptAlert(Me, "BUTTON_CLICK_MESSAGE", ex.Message)
 Finally
 DbUtils.EndTransaction
 End Try

 End Sub
Apart from customizing the features of individual columns that are exported, you can alter other aspects of the exported file by overriding and customizing the ExportToExcel method.
[bookmark: _Ref173144246][bookmark: _Toc412569584][bookmark: _Toc414866287]Customizing the ExportToExcel Method
The ExportToExcel method iterates through records, processes each value received from an input stream, formats and writes the value to an output stream which displays data in an Excel spreadsheet. The customizations made in this file are universal and will affect all database tables that are exported to Excel throughout the entire application. The ExportToExcel method:
· Creates a Title and an Author for the exported Excel file
· Creates a new Excel spreadsheet and exports the columns currently displayed in the table panel
· Defines a width for the exported columns based on their data types
· Defines the data formats of the exported columns
· Defines the font and style parameters for the exported columns' headings
· Defines the font and style parameters for the exported columns
· Exports foreign key columns and displays values of the database fields that are defined through the Display Foreign Key As (DFKA) property
These features can be customized by modifying the ExportToExcel method itself. The ExportToExcel method is defined in the ExportData class, located in:
<App Name>\App_Code\ Shared \ExportData.cs or .vb
The code snippets below illustrate various customizations to the ExportToExcel method.
Customizing the Title and Author of the exported Excel file
The default title displays the name of the exported database table or database view and can be modified appropriately.
C#:
//Create an instance of the Excel Workbook and set properties like title, author and date created
CarlosAg.ExcelXmlWriter.Workbook excelBook = new CarlosAg.ExcelXmlWriter.Workbook();
excelBook.Properties.Title = DBTable.TableDefinition.Name;
excelBook.Properties.Created = DateTime.Now;
excelBook.Properties.Author = "";
Visual Basic .NET:
‘Create an instance of the Excel Workbook and set properties like title, author and date created
Dim excelBook As New CarlosAg.ExcelXmlWriter.Workbook()
excelBook.Properties.Title = DBTable.TableDefinition.Name
excelBook.Properties.Created = DateTime.Now
excelBook.Properties.Author = ""
Customizing the Title of the created Excel sheet
By default, the Exported Excel SpreadSheet is named ‘Sheet1’, and this title is customizable as illustrated in the following example.
C#:
//Create and add a work sheet to the workbook. The sheet is named ‘Sheet1’ by default
CarlosAg.ExcelXmlWriter.Worksheet excelSheet = excelBook.Worksheets.Add("Sheet1");
excelSheet.Options.SplitHorizontal = 1;
excelSheet.Options.FreezePanes = true;
excelSheet.Options.TopRowBottomPane = 1;
Visual Basic .NET:
‘Create and add a work sheet to the workbook. The sheet is named ‘Sheet1’ by default
Dim excelSheet As CarlosAg.ExcelXmlWriter.Worksheet = excelBook.Worksheets.Add(“Sheet1”)
Dim excelRow As CarlosAg.ExcelXmlWriter.WorksheetRow = excelSheet.Table.Rows.Add()
Customizing column widths
By default, column widths are assigned based on the data type of the exported column. For example, Currency, Number and Percentage columns are assigned a width of 60 columns, while String columns are assigned a value of 110. These column width values can be modified as illustrated by the code snippet shown below.
C#:
if (!(col == null)) {
	skipHeader = false;
	if (col.TableDefinition.IsExpandableNonCompositeForeignKey(col)) {
		// Set width if field is a foreign key field
		width = 100;
	}
	else {
		switch (col.ColumnType) {
			case BaseColumn.ColumnTypes.Binary:
			case BaseColumn.ColumnTypes.Image:
				// Skip - do nothing for these columns
				skipHeader = true;
			break;
			case BaseColumn.ColumnTypes.Currency:
			case BaseColumn.ColumnTypes.Number:
			case BaseColumn.ColumnTypes.Percentage:
				width = 60;
			break;
			case BaseColumn.ColumnTypes.String:
			case BaseColumn.ColumnTypes.Very_Large_String:
				width = 110;
			break;
			default:
				width = 50;
			break;
		}
	}
	if (!skipHeader) {
		excelRow.Cells.Add(new WorksheetCell(col.Name, "HeaderRowStyle"));
		WorksheetColumn worksheetColumn = excelSheet.Table.Columns.Add(width);
	}
}
Visual Basic .NET:
If Not (IsNothing(col)) Then
	skipHeader = False
	If col.TableDefinition.IsExpandableNonCompositeForeignKey(col) Then
		'Set width if field is a foreign key
		width = 100
	Else
		Select Case col.ColumnType
			Case BaseColumn.ColumnTypes.Binary, _
			 BaseColumn.ColumnTypes.Image
				' Skip - do nothing for these columns
				skipHeader = True
			Case BaseColumn.ColumnTypes.Currency, _
			BaseColumn.ColumnTypes.Number, _
			BaseColumn.ColumnTypes.Percentage
				width = 60
			Case BaseColumn.ColumnTypes.String, _
			BaseColumn.ColumnTypes.Very_Large_String
				width = 110
			Case Else
				width = 50
		End Select
	End If
	If Not skipHeader Then
		excelRow.Cells.Add(New WorksheetCell(col.Name, "HeaderRowStyle"))
	 	Dim worksheetColumn As WorksheetColumn = excelSheet.Table.Columns.Add(width)
	End If
End If
Customizing column data formats
CarlosAgExcelXmlWriter, the third-party DLL class used to write the exported columns, requires the exported column’s data type to be specified for each exported column. By default, the Export to Excel code created by Iron Speed Designer assigns:
	Column data type
	Assigned Excel data type

	Number
	Numeric

	Currency
	Numeric

	Percentage
	Numeric

	Date Time
	Date

	String
	String

	Very Large String
	String

	Others
	String

C#:
Dim excelDataType As CarlosAg.ExcelXmlWriter.DataType
	switch (col.ColumnType) {
		case BaseColumn.ColumnTypes.Binary:
		case BaseColumn.ColumnTypes.Image:
		// Skip - do nothing for these columns
			skip = true;
		break;
		case BaseColumn.ColumnTypes.Number:
		case BaseColumn.ColumnTypes.Currency:
		case BaseColumn.ColumnTypes.Percentage:
			excelDataType = DataType.Number;
				:
				:
		break;
		case BaseColumn.ColumnTypes.Date:
			excelDataType = DataType.DateTime;
				:
				:
		break;
		case BaseColumn.ColumnTypes.Very_Large_String:
			excelDataType = DataType.String;
				:
				:
		break;
		default:
			excelDataType = DataType.String;
				:
		break;
	}
Visual Basic .NET:
Dim excelDataType As CarlosAg.ExcelXmlWriter.DataType
Select Case col.ColumnType
	Case BaseColumn.ColumnTypes.Binary, _
	BaseColumn.ColumnTypes.Image
		' Skip - do nothing for these columns
		skip = True
	Case BaseColumn.ColumnTypes.Number, _
	BaseColumn.ColumnTypes.Currency, _
	BaseColumn.ColumnTypes.Percentage
		excelDataType = DataType.Number
	Case BaseColumn.ColumnTypes.Date
		excelDataType = DataType.Da
	Case BaseColumn.ColumnTypes.Very_Large_String
		excelDataType = DataType.String
	Case Else
		excelDataType = DataType.String
End Select
Customizing column heading font and style
The exported data includes column headings in the first row of the spreadsheet. The column headings are the same as the corresponding database field names. The font, size, color and pattern attributes of the exported columns’ header fields are all customizable as illustrated in the code snippet below:
C#:
// Define a style for all column headers
CarlosAg.ExcelXmlWriter.WorksheetStyle excelHeaderStyle = excelBook.Styles.Add("HeaderRowStyle");
excelHeaderStyle.Font.Bold = true;
excelHeaderStyle.Font.FontName = "Verdana";
excelHeaderStyle.Font.Size = 8;
excelHeaderStyle.Font.Color = "#FFFFFF";
excelHeaderStyle.Interior.Color = "#000000";
excelHeaderStyle.Interior.Pattern = StyleInteriorPattern.Solid;
Visual Basic .NET:
‘ Define a style for all column headers
Dim excelHeaderStyle As CarlosAg.ExcelXmlWriter.WorksheetStyle = excelBook.Styles.Add("HeaderRowStyle")
excelHeaderStyle.Font.Bold = True
excelHeaderStyle.Font.FontName = "Verdana"
excelHeaderStyle.Font.Size = 8
excelHeaderStyle.Font.Color = "#FFFFFF"
excelHeaderStyle.Interior.Color = "#000000"
excelHeaderStyle.Interior.Pattern = StyleInteriorPattern.Solid
Customizing column text font and style
The font, size, color and other attributes of the exported columns are customizable as shown below:
C#:
// Define a unique column style for each column in the table to be exported
if ((rowCounter == 0))
{
	CarlosAg.ExcelXmlWriter.WorksheetStyle excelColumnStyle =
	excelBook.Styles.Add((exCol.DisplayColumn.ToString() + columnCounter));
	excelColumnStyle.Font.FontName = "Verdana";
	excelColumnStyle.Font.Size = 8;
	// Set the display format for the column to be exported
	if (!exCol.DisplayFormat.Equals("Default"))
	{
		excelColumnStyle.NumberFormat = exCol.DisplayFormat;
	}
}
if (!skip) {
	excelRow.Cells.Add(new WorksheetCell(val, excelDataType, (exCol.DisplayColumn.ToString() +
	columnCounter)));
}
Visual Basic .NET:
' Define a unique column style for each column in the table to be exported
If (rowCounter = 0) Then
	Dim excelColumnStyle As CarlosAg.ExcelXmlWriter.WorksheetStyle =
	excelBook.Styles.Add(exCol.DisplayColumn.ToString() & columnCounter)
	excelColumnStyle.Font.FontName = "Verdana"
	excelColumnStyle.Font.Size = 8
	‘ Set the display format for the column to be exported
	If Not (exCol.DisplayFormat.Equals("Default")) Then
		excelColumnStyle.NumberFormat = exCol.DisplayFormat
	End If
End If
If Not skip Then
	excelRow.Cells.Add(New WorksheetCell(val, excelDataType, exCol.DisplayColumn.ToString() & columnCounter))
End If
Exporting foreign key values
Iron Speed Designer exports foreign key columns and automatically displays the corresponding fields specified via the Display Foreign Key As (DFKA) property. For example, if Orders.CustomerID is a foreign key field referencing the Customers table, then the exported Orders.CustomerID column will display customers’ names instead of CustomerIDs. The Format method returns the appropriate data format of the column value that is passed. You can remove this function call if you would like to display the raw foreign key value instead of its Display Foreign Key As value.
[bookmark: _Ref164858451][bookmark: _Toc167621838][bookmark: _Toc412569585][bookmark: _Toc414866288]Crystal Reports Application Development and Deployment

Medium trust operation
Crystal Reports code customizations generally only work in Full Trust or High Trust security mode and will not work under the Medium Trust security mode typically used by application hosting providers.
Topics
Creating a Crystal Reports Report File
Adding a Crystal Report to Your Iron Speed Designer Application
Adding Crystal Reports References to Your Project
Opening Crystal Reports PDF Files in Separate Browser Windows
Deploying a Crystal Reports Application
Compilation Errors

[bookmark: _Ref167694488][bookmark: _Toc412569586][bookmark: _Toc414866289]Creating a Crystal Reports Report File
When Crystal Reports files are created using Visual Studio 2005, Visual Studio 2005 embeds the Crystal Reports assembly information in your application’s Web.config file. This may conflict with the DLLs within the application’s \bin folder. For Crystal Reports XI Release 2, we recommend using Crystal Reports itself to create Crystal Reports report files instead of Visual Studio.
Crystal Reports 10 comes with Visual Studio 2005. Since Visual Studio 2005 does not come with the Crystal Reports application development tool, you must create Crystal Reports report files with Visual Studio 2005 by following these steps:
Step 1: In Visual Studio 2005, select New File Web Site.
[image:]
Step 2: Press “OK”.
[image:]
Step 3: Right-click “C:\...\WebSite1\” and select “Add New Item”.
[image:]
Step 4: Select “Crystal Report” and specify the file name of the report file.
Step 5: Press “Add”.
Step 6: Configure the Crystal Reports report.
Step 7: You should see your .RPT report file in the Visual Studio Solution Explorer (shown as CrystalReport.rpt in the example below). Move your .RPT report file into your application folder. Now the Crystal Reports report file is ready to be used in your application.
[image:]
[bookmark: _Ref167694489][bookmark: _Toc412569587][bookmark: _Toc414866290]Adding a Crystal Report to Your Iron Speed Designer Application
Updated August 26, 2010
Iron Speed Designer V7.1 and later
Step 1: In the Layout Editor, drag a Crystal Reports control from the Toolbox onto your page. The Configuration Wizard is automatically displayed.
[image:]
Step 2: In the Configuration Wizard, specify the text you want displayed on the button in your application. By default, the text is “Show Report”.
Step 3: Select “Crystal Report File” on the Variables list and choose your .RPT report file.
Step 4: Select “Browse...” and locate the path for CrystalDecisions.CrystalReports.Engine.dll file. Similarly select the “CrystalDecisions.ReportSource.dll” and “CrystalDecision.Shared.dll” files.
[image:]
Step 5: Click “Finish” to complete the configuration.
Step 6: (Optional.) In the Application Explorer, select the page’s.CS or .VB code-behind file.
Step 7: (Optional.) If your report requires parameters, uncomment the following code and specify the required parameters. If your report requires parameters, your application will not run unless they are specified!
C#:
//CrystalDecisions.Shared.ParameterDiscreteValue paramValue = new CrystalDecisions.Shared.ParameterDiscreteValue();
//paramValue.Value = "ALFKI";
//crReportDocument.SetParameterValue("CurrentCustID", paramValue);
//**
Step 8: (Optional) If your report requires database sign-in, uncomment the following code and specify database sign-in information. During development, you may not receive any error if you do not specify the database sign-in information. However, when deploying your application, you may receive a “Logon failed” error, so please make sure to specify the database sign-in information.
////define and locate required objects for db login
//CrystalDecisions.CrystalReports.Engine.Database db = crReportDocument.Database;
//CrystalDecisions.CrystalReports.Engine.Tables tables = db.Tables;
//CrystalDecisions.Shared.TableLogOnInfo tableLoginInfo = new CrystalDecisions.Shared.TableLogOnInfo();

////define connection information
//CrystalDecisions.Shared.ConnectionInfo dbConnInfo = new CrystalDecisions.Shared.ConnectionInfo();
//dbConnInfo.UserID = "username";
//dbConnInfo.Password = "pwd";
//dbConnInfo.ServerName = "DBName";

////apply connection information to each table
//foreach (CrystalDecisions.CrystalReports.Engine.Table table in tables)
//{
	//	tableLoginInfo = table.LogOnInfo;
	//	tableLoginInfo.ConnectionInfo = dbConnInfo;
	//	table.ApplyLogOnInfo(tableLoginInfo);
//}
Step 9: Build and run your application. Press “Yes” if you are asked to save the changes.
[image:]
Smooth panel update conflicts
You may need to disable smooth panel update feature in order for the Crystal Reports button to function properly.
[bookmark: _Toc104374274][bookmark: _Toc104634694][bookmark: _Ref107836530][bookmark: _Ref167686269][bookmark: _Ref167694490][bookmark: _Toc412569588][bookmark: _Toc414866291]Adding Crystal Reports References to Your Project
Updated October 18, 2006
Iron Speed Designer V4.0 and later
When adding a Crystal Reports code customization to your application, you may need to add appropriate DLL references to your project.
Adding Crystal Reports References By Hand
Copy these DLLs into your application’s \Bin folder.
· CrystalDecisions.Shared.dll
· CrystalDecisions.CrystalReports.Engine.dll
· CrystalDecisions.ReportSoruce.dll
These DLLs are most likely located in:
Crystal Reports XI Release 2 using .NET Framework 2.0 / 3.0:
C:\Program Files\Business Objects\Common\3.5\managed\dotnet2
Crystal Reports included with Visual Studio 2005 using .NET Framework 2.0 / 3.0:
C:\Program Files\Common Files\Business Objects\2.7\Managed
Note that Crystal Decisions changed their name to Business Objects, so their folder names may have changed as well.
Adding Crystal Reports References Using Visual Studio .NET
Step 1: Open your project in Visual Studio .NET. Open the Solution Explorer, expand the Project tag in the tree and select the References tag. Right mouse click and select Add Reference.
Step 2: On the Add Reference dialog, select the CrystalDecisions.CrystalReports.Engine component and press the Select button. This will add the library to the Selected Components area at the bottom of the dialog. Repeat this for the CrystalDecisions.Shared component. Press OK on the dialog to add this to the Visual Studio .NET project.
Step 3: Save the project. You can either build from Visual Studio .NET or you can build from Iron Speed Designer.
To build from Iron Speed Designer, set your application’s compiler to Visual Studio .NET via the Application Wizard in Iron Speed Designer.
[bookmark: _Ref107836895][bookmark: _Toc412569589][bookmark: _Toc414866292]Opening Crystal Reports PDF Files in Separate Browser Windows
Updated June 5, 2006
Iron Speed Designer V4.0 and later
To make a Crystal Reports (PDF) open its own browser window, emit JavaScript that launches a browser window whose URL is the path to the PDF document.
One drawback with this procedure is there will be leftover PDF files each time a Crystal Report is exported to PDF.
[bookmark: _Ref167619136][bookmark: _Toc167621840][bookmark: _Toc412569590][bookmark: _Toc414866293]Deploying a Crystal Reports Application
Installing and configuring the Crystal Reports Server on your deployment machine
When installing a Crystal Reports Server on your deployment machine, you will be prompted to select the “installation type”:
[image: 0]
If you choose “Install MySQL database server”, you will need to provide user names and passwords for creating accounts on MySQL and CMS. If you choose, “Using existing database server,” you will need to select a table from your existing Oracle, Microsoft SQL Server, or Microsoft Access database. This table is used by CMS. However, this choice is more complicated, so we recommend choosing “Install MySQL database server”.
After installing the Crystal Reports Server, you will see several applications allowing you to configure Crystal Reports Server from the start menu. You are not required to do any configuration on these applications; however, you do need to go to Start Business Objects Central Configuration Manager and make sure all “Display Names” have a green icon. A red icon indicates the Crystal Reports Server is not running properly.
Updating your report’s data sources for your production machine
When you deploy your application to production, make sure to alter the data source for any Crystal Reports report files included in your application. Make these changes in the .RPT file created by Crystal Reports. If you don’t update the data source for your Crystal Reports files, they may still refer to data sources present in your development machine even after you deploy your application to the production machine. As a result, your Crystal Reports files cannot access your production database and will throw error messages such as “Unable to access data.”
Synchronizing Crystal Reports DLLs in your application and production machine
Before deploying your application, check that the same Crystal Reports DLLs are in both your application’s \bin folder and on the deployment machine. If they contain different DLLs, then your application may not run properly since it references different DLLs than those available on the deployment machine.
Follow these steps if your application and your deployment machine contain different DLLs:
Step 1: Manually replace the Crystal Reports DLLs in your application’s \bin folder with the DLLs on your deployment machine. If you installed Crystal Reports XI Release 2 Server in the default location, you should be able to find these DLLs at:
C:\Program Files\Business Objects\common\3.5\managed
Step 2: In Iron Speed Designer, create an MSI installer via the Deployment Wizard (Deploy, Deployment Wizard…).
Step 3: Restore the original Crystal Reports DLLs in your application’s \bin folder on your development machine.
If your development and deployment machines have the same Crystal Reports DLLs, you can skip steps 1 and 3.
Deploying your application to a production machine
You can deploy an Iron Speed Designer application using any of the normal deployment methods, including:
· Create an MSI deployment installer with Iron Speed Designer.
· Use the .NET Framework compiler, aspnet_compiler.
· XCOPY
· Publish the website using Visual Studio .NET 2005.
Configuring temp folder permissions
For Microsoft Windows 2003 installations, make sure the Network Service has read and write privileges to the windows/temp folder as below:
[image:]
[bookmark: _Toc104351151][bookmark: _Ref104622704][bookmark: _Toc104634693][bookmark: _Ref167686266][bookmark: _Ref167694491][bookmark: _Toc412569591][bookmark: _Toc414866294]Compilation Errors
Updated June 5, 2006
Iron Speed Designer V4.0 and later
If you get compilation errors when compiling an application after incorporating a Crystal Reports example, please ensure that you have followed the following steps:
Procedure
Step 1: Open the project in Visual Studio and double-click the AssemblyInfo.cs file in Solution Explorer. (Note: this applies only to C# projects and does not apply to Visual Basic .NET projects).
Step 2: In AssemblyInfo.cs, locate the following code:
[assembly: CLSCompliant(true)]
Step 3: Replace the above line with:
[assembly: CLSCompliant(false)]
Step 4: Add a Crystal Reports report by right-clicking on the project in Solution Explorer and selecting:
Add Add New Item Crystal Report
Step 5: Build the application in Visual Studio .NET.
Step 6: Locate and open the page’s class that contains the Crystal Reports, e.g.:
ShowProductsTable.aspx.cs or .vb
Step 7: Insert the following lines at the top of the page’s class file. These statements link the necessary Crystal Reports objects into your application.
C#:
using CrystalDecisions.CrystalReports.Engine;
using CrystalDecisions.Shared;
Visual Basic .NET:
Imports CrystalDecisions.CrystalReports.Engine
Imports CrystalDecisions.Shared
Step 8: In Iron Speed Designer’s Application Wizard, set your application to compile with Visual Studio .NET instead of CSC or VBC.
Step 9: Build and run the application.
[bookmark: _Ref104622706][bookmark: _Toc104634695][bookmark: _Ref148182846][bookmark: _Toc412569592][bookmark: _Toc414866295]Code Customization Examples
Access ASP.NET Controls in Code-Behind Classes
Access Session State Information in Applications
Access Variables in the Data Access Layer
Adding an ASP.NET DataGrid Control to a Web Page
Adding Custom Functions to Your Application
Applying a Special CSS Style Sheet on Selected Pages
Catch Exceptions Raised in Custom Stored Procedures and Triggers
Compare Control Values with CompareValidator
Create a Series of Wizard Pages to Add a Record
Creating a Custom Large List Selector
Customizing the Data Access Layer
Customizing the Default Error Message
Disable ValidationSummary and JavaScript for a Page
Disable View State for a Page
Expanding / Collapsing Sections on a Page
Handling Button Events
Modify the RedirectURL Property of a Menu
Opening a Page in a New Browser Window
Redirect to a Page Based on Logged In User
Retrieve Records with Primary, Non-Primary, and Composite Keys
Setting a Field to NULL
Use Data Access Classes in Windows Forms Applications
Validate a Field in the Business Layer

[bookmark: _Toc104137554][bookmark: _Toc104207626][bookmark: _Toc104267793][bookmark: _Toc104634713][bookmark: _Ref157426694][bookmark: _Toc412569593][bookmark: _Toc104137543][bookmark: _Toc104207623][bookmark: _Toc104267790][bookmark: _Toc104634710][bookmark: _Toc104137534][bookmark: _Toc104207616][bookmark: _Toc104267783][bookmark: _Toc104634704][bookmark: _Toc104092560][bookmark: _Toc104207607][bookmark: _Toc104267774][bookmark: _Toc104634700][bookmark: _Toc414866296]Access ASP.NET Controls in Code-Behind Classes
Updated March 30, 2010
Iron Speed Designer V6.2 and later
Sometimes, however, you just want to display text on a page, place a label adjacent to a text box or display other data that is not necessarily coming from a database field. In such cases, you can add standard ASP.NET controls to your pages at locations of your choice via the Layout Editor.
Adding ASP.NET controls to a page
Follow these steps to access ASP.NET controls in code-behind classes created by Iron Speed Designer.
Step 1: Create an application using a table, such as the Orders table in Northwind.
Step 2: Use the Application Explorer to open the ShowOrdersTable.aspx page.
Step 3: In the Layout Editor, drag an ASP.NET TextBox control from the Toolbox onto the page.
<asp:textbox id="myTextbox" runat="server" />
Step 3: Handle the PreRender event for the ShowOrdersTable.aspx page and set the text of the ASP.NET TtextBox control. This is described in detail in the following sections.
Accessing ASP.NET controls in a Page class
Add your code in the “Page” class of ShowOrdersTable.aspx.cs, located in:
<Application Folder>\Orders\ShowOrdersTable.aspx.cs
C#:
public ShowOrdersTable()
{
	this.PreRender += new EventHandler(Page_PreRender);
}

private void Page_PreRender(object sender, EventArgs e)
{
	this.myTextbox.Text = "PAGE CLASS";
}
Visual Basic .NET:
Private Sub ShowOrdersTable_PreRender(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.PreRender
	Me.myTextbox.Text = "PAGE CLASS"
End Sub
Accessing ASP.NET controls in TableControl and RecordControl classes
Add your code in the TableControl class or RecordControl class of ShowOrdersTable.aspx.cs, located in:
<Application Folder>\App_Code\Orders\ShowOrdersTable.Controls.cs
C# TableControl class:
public OrdersTableControl()
{
	this.PreRender += new EventHandler(TableControl_PreRender);
}
private void TableControl_PreRender(object sender, EventArgs e)
{
	System.Web.UI.WebControls.TextBox myTextbox =
		(System.Web.UI.WebControls.TextBox)(this.Page.FindControlRecursively("myTextbox"));
	myTextbox.Text = "TABLE CONTROL CLASS";
}
C# RecordControl class:
public OrdersTableControlRecordControl()
{
	this.PreRender += new EventHandler(RecordControl_PreRender);
}
private void RecordControl_PreRender(object sender, EventArgs e)
{
	System.Web.UI.WebControls.TextBox myTextbox =
		(System.Web.UI.WebControls.TextBox)(this.Page.FindControlRecursively("myTextbox"));
	myTextbox.Text = "RECORD CONTROL CLASS";
}
Visual Basic .NET TableControl and RecordControl classes:
Private Sub myOrdersTableControlRecordControl_PreRender(ByVal sender As Object, ByVal e As System.EventArgs)
	Handles Me.PreRender

	Dim tempTextBox As System.Web.UI.WebControls.TextBox =
		CType(Me.Page.FindControlRecursively("myTextBox"),
	System.Web.UI.WebControls.TextBox)
	tempTextBox.Text = "TABLE CONTROL AND RECORD CONTROL CLASS"
End Sub
Note that “myTextBox” is the ID of the ASP.NET TextBox control.

[bookmark: _Toc104292409][bookmark: _Toc104634719][bookmark: _Ref157426696][bookmark: _Toc412569594][bookmark: _Toc414866297]Access Session State Information in Applications
Updated June 5, 2006
Iron Speed Designer V4.0 and later
Session variables can be used to pass values across pages in an application because information stored in the Session object is available throughout the session and has session scope. For example, you can store control values in session variables and access them in another web form. You can use this technique to pass information from page to page when creating a series of wizard pages to add a record. Or, you can store information about a signed-in user in a session object for later use in a “WHERE “clause when initializing a control or in other custom code.
Accessing session variables
Session objects can be set in any BaseClasses methods, events or custom functions. Similarly Session objects can be accessed anywhere in your application. In some cases, you may be able to access the .NET Session class directly. If you cannot access the Session class directly, you may need to specify its full path as follows:
In C#, to access a session value:
System.Web.HttpContext.Current.Session[“MyVariable”]
(string) System.Web.HttpContext.Current.Session[“MyVariable”]
In C#, to set a session value:
System.Web.HttpContext.Current.Session[“MyVariable”] = “NewValue”
In Visual Basic .NET, to access a session value:
System.Web.HttpContext.Current.Session(“MyVariable”)
System.Web.HttpContext.Current.Session(“MyVariable”).ToString()
In Visual Basic .NET, to set a session value:
System.Web.HttpContext.Current.Session(“MyVariable”) = “NewValue”
[bookmark: _Toc104207513][bookmark: _Toc104267801]Sharing State between Applications
Iron Speed Designer builds standard Microsoft .NET applications. If you want to share session states across applications, you may want to review some of the online help available on how to accomplish this in Microsoft .NET applications. Here are some links that you might find helpful.
http://www.asp101.com/articles/jayram/sharestate/default.asp
http://searchvb.techtarget.com/vsnetATEAnswers/0,293820,sid8_gci1011277_tax293672,00.html
Using the SessionNavigationHistory class
You can use the .NET SessionNavigationHistory class to perform actions in pages based on where your user came from in the application. For example, you can obtain the previous URL in the SessionNavigationHistory list using the GetPreviousRequest method. Here’s how to define and use the SessionNavigationHistory class:
Dim str As BaseClasses.Web.SessionNavigationHistory = Me.GetSessionNavigationHistory
Dim stry As BaseClasses.Web.SessionNavigationHistory.RequestInfo = str.GetPreviousRequest()
See Also
ASP.NET State Management Overview:
http://support.microsoft.com/default.aspx?scid=kb;en-us;307598
Session State Overview in .NET Framework Developer's Guide:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconsessionstate.asp

[bookmark: _Toc104292410][bookmark: _Toc104634724][bookmark: _Ref157426700][bookmark: _Toc412569595][bookmark: _Toc104207508][bookmark: _Toc104267800][bookmark: _Toc104634718][bookmark: _Toc414866298]Access Variables in the Data Access Layer
Updated October 20, 2006
Iron Speed Designer V4.0 and later
Iron Speed Designer-applications maintain strict separation between the Presentation Layer (user interface) and the Data Access Layer. While code customizations are typically added to an application’s Presentation Layer code-behind files, it is sometimes useful to add customizations in the Data Access Layer. If your Data Access Layer customization depends on the value of a control which is not data bound, you can retrieve it with the help of the DataAccessSettings class. The DataAccessSettings class can also be used to retrieve other useful information, such as the SignedInUserId and the SignedInUserName.
In the example below, the AddOrders.aspx page has an ASP.NET TextBox control. The value of the text box cannot be accessed directly in the Data Access Layer, so the value is passed from the Presentation Layer to the Data Access Layer via the SystemUtils.SetDataAccessSettingsParameterValue method.
Step 1: Handle the GetUIData() method in the RecordControl class of AddOrders.aspx. Use the SetDataAccessSettingsParameterValue method to pass the value of the ASP.NET text box.
The SetDataAccessSettingsParameterValue method has two arguments. The first argument is a key and the second argument is its value. In the code below, “MYKEY” is the key and its value is “myKeyValue”. The SetDataAccessSettingsParameterValue method can be called in any methods and, in this example, is called in the GetUIData() event in the AddOrders class.
The DataAccessSettings class is used to retrieve the value of the ASP.NET text box in the Data Access Layer. Override the GetUIData() method in the OrdersRecordControl class, located in:
<App Folder>\App_Code\Orders\AddOrders.Controls.cs or .vb
C#:
public override void GetUIData()
{
	base.GetUIData();
	this.Page.SystemUtils.SetDataAccessSettingsParameterValue("MYKEY", "myValue");
}
Visual Basic .NET:
Public Overrides Sub GetUIData()
	MyBase.GetUIData
	Me.Page.SystemUtils.SetDataAccessSettingsParameterValue("MYKEY", "myValue")
End Sub
Step 2: Add the following code in the OrdersRecord class in the Data Access Layer. This code overrides the default constructor with a newly defined OrderRecord_InsertedRecord() method. This new method gets the DataAccessSetting object which contains the key value. In addition, the UserID and Password can be retrieved from this object.
The OrdersRecord class is located in:
<Application Folder>\App_Code\Business Layer\OrdersRecord.cs or .vb
C#:
public OrdersRecord()
{
	this.InsertedRecord+= new
		BaseClasses.IRecordWithTriggerEvents.InsertedRecordEventHandler(OrdersRecord_InsertedRecord);
}

private void OrdersRecord_InsertedRecord(object sender, System.EventArgs e)
{
	DataAccessSettings dataAccessSettingsObj = DataAccessSettings.Current;
	if(dataAccessSettingsObj.ContainsKey("MYKEY"))
	{
		String myKey = (String)dataAccessSettingsObj["MYKEY"];
		String myUserID = dataAccessSettingsObj.SignedInUserId;
		String myUserName = dataAccessSettingsObj.SignedInUserName;

		//More code customization to fit your logic
	}
}
Visual Basic .NET:
Public Sub New()
	MyBase.New
	AddHandler InsertedRecord, AddressOf Me.OrdersRecord_InsertedRecord
End Sub

Private Sub OrdersRecord_InsertedRecord(ByVal sender As Object, ByVal e As System.EventArgs)
	Dim dataAccessSettingsObj As DataAccessSettings = DataAccessSettings.Current
	If dataAccessSettingsObj.ContainsKey("MYKEY") Then
		Dim myKey As String = CType(dataAccessSettingsObj("MYKEY"),String)
		Dim myUserID As String = dataAccessSettingsObj.SignedInUserId
		Dim myUserName As String = dataAccessSettingsObj.SignedInUserName

	‘More code customization to fit your logic

	End If
End Sub
Note: You can retrieve the value of a control in any of the events available in the OrdersRecord class based on where you want to add your business logic. The events available in the OrdersRecord class are:
InsertingRecord
InsertedRecord
SavingRecord
SavedRecord
DeletingRecord
DeletedRecord
UpdatedRecord
UpdatingRecord

[bookmark: _Ref237849314][bookmark: _Toc412569596][bookmark: _Toc414866299]Adding an ASP.NET DataGrid Control to a Web Page
[bookmark: Updated_March_22]Updated August 12, 2009
Iron Speed Designer V6.2 and later
In some situations it may be desirable to use an ASP.NET data grid in your application instead of a table control created by Iron Speed Designer, for example:
· Existing data grid. Your application may have a page that already has an ASP.NET data grid, and you may wish to use the existing ASP.NET data grid instead of adding an Iron Speed Designer-created table control.
· Simplicity. You might find it easier to work with an ASP.NET data grid instead of an Iron Speed Designer-created table control.
· Familiarity. You may already be familiar with the ASP.NET data grid and don’t have time to learn how to customize code for a new table control.
Adding an ASP.NET DataGrid control on a page
This example adds an ASP.NET data grid at the bottom of a Table Report page, below an Iron Speed Designer-created table panel.
Step 1: In the Application Explorer, open the page where a DataGrid is to be added.
Step 2: Zoom out to the page level and locate the cell on the Layout Editor where you want to place the DataGrid control.
Step 3: Add the following ASP.NET tags in the HTML Editor:
<asp:datagrid id="myDataGrid" OnItemDataBound= "MyItemDataBound" runat="server">
	<HeaderStyle BackColor = "#336699" ForeColor = "#ffffff" Font-Bold = "true" />
	<AlternatingItemStyle BackColor = "#eeeeee" />
</asp:datagrid>
Step 4: Override the DataBind() method in Section 1 of the Page class, located in:
<Application Folder>\<App_Code>\Orders\ShowOrdersTable.aspx.cs or .vb
C#:
public override void DataBind()
{
	base.DataBind();
	if (!this.Page.IsPostBack)
	{
		System.Web.UI.WebControls.DataGrid myDataGrid;
		myDataGrid = ((System.Web.UI.WebControls.DataGrid)(this.FindControlRecursively("myDataGrid")));
		if (!(myDataGrid == null))
		{
			string whereStr = null;
			BaseClasses.Data.OrderBy ob = null;
			int pageIndex = 0;
			int pageSize = 1000;
			myDataGrid.DataSource = OrdersTable.GetDataTable(whereStr, ob, pageIndex, pageSize);
	 		myDataGrid.DataBind();
		}
	}
}
public void MyItemDataBound(object sender, System.Web.UI.WebControls.DataGridItemEventArgs e)
{
	if (e.Item.ItemType == System.Web.UI.WebControls.ListItemType.Item ||
		e.Item.ItemType == System.Web.UI.WebControls.ListItemType.AlternatingItem)
	{
		for(int i = 1; i < (e.Item.Cells.Count); i++)
		{
			e.Item.Cells[i].Style["cursor"] = "hand";
		}
	}
}
Visual Basic .NET:
Public Overrides Sub DataBind()
	MyBase.DataBind()
	If (Not Me.Page.IsPostBack) Then
		Dim myDataGrid As System.Web.UI.WebControls.DataGrid
		myDataGrid = CType(Me.FindControlRecursively("myDataGrid"), System.Web.UI.WebControls.DataGrid)

		If (Not myDataGrid Is Nothing) Then
			Dim whereStr As String = Nothing
			Dim ob As BaseClasses.Data.OrderBy = Nothing
			Dim pageIndex As Integer = 0
			Dim pageSize As Integer = 1000

			myDataGrid.DataSource = OrdersTable.GetDataTable(whereStr, ob, pageIndex, pageSize)
			myDataGrid.DataBind()
		End If
	End If
End Sub

Public Sub MyItemDataBound(ByVal sender As Object, _
	ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)
	If e.Item.ItemType = ListItemType.Item OrElse e.Item.ItemType = ListItemType.AlternatingItem Then
		Dim i As Integer = 0

		While i < (e.Item.Cells.Count)
			e.Item.Cells(i).Style("cursor") = "hand"
			System.Math.Min(System.Threading.Interlocked.Increment(i),i-1)
		End While
	End If
End Sub
Step 5: Build and run your application.
Replace an Iron Speed Designer-created table control with an ASP.NET DataGrid control
Instead of writing the ASP.NET data grid code from scratch, you can use an Iron Speed Designer-created table control to populate your ASP.NET data grid, saving you a lot of programming. Since the ASP.NET data grid is populated using the Iron Speed Designer-created table control, features such as filtering, search and pagination are automatically implemented.
Step 1: Create an application in Iron Speed Designer using a database table, such as the Orders table in Northwind.
Step 2: In the Layout Editor, zoom in or out on the page level until you locate the fields region for the OrdersTableControl e.g., OrdersFields.
Step 3: Delete the OrdersFields panel on the Layout Editor.
Step 4: Paste the following code into the same cell via the HTML Editor.
<asp:datagrid id="myDataGrid" runat="server">
	<HeaderStyle BackColor = "#336699" ForeColor = "#ffffff" Font-Bold = "true" />
	<AlternatingItemStyle BackColor = "#eeeeee" />
</asp:datagrid>
Step 5: Override the DataBind method in the TableControl class of the ShowOrdersTable.aspx web page. Add your code in the OrdersTableControl class, located in:
<Application Folder>\App_Code\Orders\ShowOrdersTable.Controls.cs or .vb
C#:
public override void DataBind()
{
 base.DataBind();
 if (this.DataSource == null)
 {
 return;
 }
 BindPaginationControls();
 System.Web.UI.WebControls.DataGrid grid = (System.Web.UI.WebControls.DataGrid)(this.FindControl("myDataGrid"));
 this.SetCustomerIDFilter();
 this.SetSalesRepIDFilter();
 System.Data.DataTable table = OrdersTable.Instance.CreateDataTable(this.DataSource);
 grid.DataSource = table;
 grid.DataBind();

 }
Visual Basic .NET:
Public Overrides Sub DataBind()
	MyBase.DataBind
	If (Me.DataSource Is Nothing) Then
		Return
	End If
	BindPaginationControls
	Dim grid As System.Web.UI.WebControls.DataGrid =
		CType(Me.FindControl("myDataGrid"),System.Web.UI.WebControls.DataGrid)
Me.SetCustomerIDFilter()
Me.SetSalesRepIDFilter()	Dim table As System.Data.DataTable = OrdersTable.Instance.CreateDataTable(Me.DataSource)
	grid.DataSource = table
	grid.DataBind
End Sub
Step 6: Build and run your application.

[bookmark: _Toc104207493][bookmark: _Ref104207634][bookmark: _Ref132793607][bookmark: _Ref157426703][bookmark: _Toc412569597][bookmark: _Toc104137557][bookmark: _Ref104207107][bookmark: _Toc414866300]Adding Custom Functions to Your Application
Updated June 5, 2006
Iron Speed Designer V4.0 and later
Calling your custom code functions is an integral part of customizing your application. Custom functions can be used for variety of reasons such as displaying the results of a mathematical calculation and setting certain field values programmatically.
Step1. To add custom functions to your application, create a .cs or .vb file for your code, such as CustomFunctionFile.cs or .vb. Your custom code file contains classes and methods and looks something like:
C#:
namespace myCustomNameSpace
{
	public class CustomFunction
	{
		public static bool myCustomFunction(int a)
		{
			if ((a < 10))
			{
				return true;
			}
			else
			{
				return false;
			}
		}
	}
}
Visual Basic.NET:
Namespace mynameSpace
Public Class CustomFunction
	Public Shared Function myCustomFunction(ByVal a As Integer) As Boolean
		If (a < 10) Then
			Return True
		Else
			Return False
		End If
	End Function
End Class
End Namespace
Step 2: Include your custom code file in your Iron Speed Designer-application in the App_Code folder located in:
<Application Folder>\App_Code
Using Visual Studio .NET to compile your application
If you are using Visual Studio .NET to compile your application, identify the custom code file to Visual Studio .NET. In Visual Studio .NET, select Add, Add Existing Item.
Using CSC or VBC to compile your application
If you are using the CSC or VBC compiler, your custom code file will be automatically compiled as part of your application.
Step 3: Add a declaration at the top of any Safe class file in your application where your custom code function is called.
C#:
using myCustomNameSpace;
Note: myCustomNameSpace is the namespace declared in CustomFunctionFile.cs.
Visual Basic .NET:
Imports mynameSpace.CustomFunction
Note: MyAppvb1 is the application name, mynameSpace is the name space and CustomFunction is the class name in your custom code file, CustomFunctionFile.vb.
Step 4: Call your custom code function in your application page’s safe class.
C#:
myCustomNameSpace.CustomFunction.myCustomFunction(4);
Visual Basic.NET using the Visual Studio .NET compiler:
myCustomFunction(4)

[bookmark: _Ref291864998][bookmark: _Toc412569598][bookmark: _Toc414866301]Applying a Special CSS Style Sheet on Selected Pages
In some case, you might need to apply a special CSS style sheet on certain pages instead of using the stylesheet in the App_Theme folder. To do this, you need to customize two methods, Page_InitializeEventHandlers, and Page_PreInit in your code behind .aspx.cs or .aspx.vb.
Updated April 29, 2011
Iron Speed Designer V8.0 and later
C#:
 public void Page_InitializeEventHandlers(object sender, System.EventArgs e) {
 // Handles MyBase.Init.
 // Register the Event handler for any Events.
 this.Page_InitializeEventHandlers_Base(sender, e);
 // here is how you add <link href="../css/fancyforms.css" rel="stylesheet" type="text/css" /> to your applicaiton
 HtmlLink css = new HtmlLink();
 css.Href = "../css/fancyforms.css";
 css.Attributes["rel"] = "stylesheet";
 css.Attributes["type"] = "text/css";
 Header.Controls.Add(css);
 }

 public void Page_PreInit(object sender, System.EventArgs e) {
 // Override call to PreInit_Base() here to change top level master page used by this page.
 // For example for SharePoint applications uncomment next line to use Microsoft SharePoint default master page
 // If Not Me.Master Is Nothing Then Me.Master.MasterPageFile = Microsoft.SharePoint.SPContext.Current.Web.MasterUrl
 // You may change here assignment of application theme
 try {
 this.PreInit_Base();
 // disable .net theme
 this.Theme = "";
 }
 catch (Exception ex) {
 }
 }

Visual Basic .NET:
 Public Sub Page_InitializeEventHandlers(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Init
 ' Handles MyBase.Init.
 ' Register the Event handler for any Events.
 Me.Page_InitializeEventHandlers_Base(sender, e)

 ' here is how you add <link href="../css/fancyforms.css" rel="stylesheet" type="text/css" /> to your applicaiton
 Dim css As HtmlLink = New HtmlLink()
 css.Href = "../css/fancyforms.css"
 css.Attributes("rel") = "stylesheet"
 css.Attributes("type") = "text/css"
 Header.Controls.Add(css)
 End Sub

 Public Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.PreInit
 'Override call to PreInit_Base() here to change top level master page used by this page.
 'For example for SharePoint applications uncomment next line to use Microsoft SharePoint default master page
 'If Not Me.Master Is Nothing Then Me.Master.MasterPageFile = Microsoft.SharePoint.SPContext.Current.Web.MasterUrl	
 'You may change here assignment of application theme
 Try
 Me.PreInit_Base()

 ' disable .net theme
 Me.Theme = ""

 Catch ex As Exception

 End Try			
 End Sub

[bookmark: _Toc104137517][bookmark: _Toc104207610][bookmark: _Toc104267777][bookmark: _Toc104634705][bookmark: _Ref157426708][bookmark: _Toc412569599][bookmark: _Toc414866302]Catch Exceptions Raised in Custom Stored Procedures and Triggers
Updated March 17, 2006
Iron Speed Designer V4.0 and later
Exceptions and error messages sent from custom triggers in your database, database-enforced constraints and stored procedures are transmitted to the user interface layer of your application and relayed to the user. In some cases, these database-generated error messages may be too technical or jargonistic for your application users to understand. For example, an error message saying, “ORA-00xxx: ... constraint violated ...” isn’t informative or helpful for most users.
You can catch exceptions thrown by your database and replace the associated error messages with your own, more helpful messages. Several mechanisms are described below.
Override OnSaveData in the RecordControl class
If you want to catch exceptions reported by your database, you can override the OnSaveData function in the RecordControl class in the page’s customizable class file. Place a Try/Catch block around the commit transaction to handle the exception. The following pseudo-code might help:
OnSaveData()
	Try
		Call MyBase.OnSaveData
		Call CommitTransaction
	Catch
		Handle the database exceptions generated by CommitTransaction.
	End Catch
Modify the underlying Base Classes handling of SQL Exceptions
Handle the message directly or to provide a more explanatory version of the error message in the ConvertSQLServerDBException function, located in:
...\BaseClasses\Data\SqlProvider\RDbAdapterUtils.vb
See Also
See the following help from Microsoft on this topic:
HOW TO: Return Errors and Warnings from a SQL Server Stored Procedure in ADO.NET
http://support.microsoft.com/default.aspx?scid=kb;en-us;321903&Product=adonet

[bookmark: _Ref157426714][bookmark: _Toc412569600][bookmark: _Toc104137531][bookmark: _Toc104207615][bookmark: _Toc104267782][bookmark: _Toc104634707][bookmark: _Toc414866303]Compare Control Values with CompareValidator
Updated March 30, 2010
Iron Speed Designer V6.2 and later
This example adds a standard ASP.NET CompareValidator to compare two controls on a page.
Step 1: In Iron Speed Designer, open the page where you wish to add the control and select the appropriate page area in the Layout Editor.
Step 2: Select the control that you want to compare.
Step 3: Add the CompareValidator control tag at the desired location via the HTML Editor. For example, suppose you want to compare the EmailAddress and EmailAddressAgain controls. Add the CompareValidator just below the <GEN:FieldValue Name=" EmailAddress" /> tag:
<GEN:FieldValue NAME=" EmailAddress" />
<asp:CompareValidator
	id="MyCompareValidatorId"
	ControlToValidate="EmailAddress"
	ControlToCompare="EmailAddressAgain"
	Operator="Equal"
	ErrorMessage="Email Addresses must be the same."
	runat="server" />
</td>

[bookmark: _Toc104137566][bookmark: _Toc104207630][bookmark: _Toc104267797][bookmark: _Toc104634709][bookmark: _Ref157426719][bookmark: _Toc412569601][bookmark: _Toc414866304]Create a Series of Wizard Pages to Add a Record
Updated March 30, 2010
Iron Speed Designer V7.0 and later
Creating a wizard – a series of web pages that create or update a single database record – is easy to do in Iron Speed Designer.
Let’s say you have an Add Customer function that gathers information about a new customer using two pages:
· Add Customer page, for collecting and updating basic customer information.
· Add Credit Card information page, for collecting and updating the customer’s credit card information.
By default, Iron Speed Designer creates applications where the transaction boundary is page-based – a normal .NET practice. So any information gathered is committed to the database for each page. In order to create a wizard where one transaction spans data gathered on multiple web pages, you will need to write custom code. This code customization saves information gathered in each page in the session instead of the database. Then, the code customization saves the combined information to the database on the final page of the wizard. This is fairly easy to accomplish.
The following example demonstrates this Iron Speed Designer feature by splitting an ‘Add Customer’ procedure into a two-step process: first, we gather the customer ID, company name, contact name and contact title. Second, we add customer contact information such as address, phone, FAX, etc. The example is built using the Customers table in the Northwind database.
Creating the first page in the wizard
Step 1: Create an Add Record page using the Application Wizard in Iron Speed Designer. For this example, use the Customers table in the Northwind database. This example assumes an Add Record page was not already created by default. If you already have Add Record page in your application, you can either delete or modify that Add Record page in similar fashion.
Step 2: Delete the Save and Cancel buttons since we won’t need to save any data to the database in the first step of our wizard.
Step 3: In the Layout Editor, select the Record panel and remove all of the fields except CustomerID, CompanyName, ConctactName, and ContactTitle.
Step 4: In the Layout Editor, drag a Button control from the Toolbox onto the Add Record panel.
Step 5: For the newly added “Next” button control, set these properties in the Property Sheet:
	Group
	Property
	Setting

	[Application Generation]
	Button action
	Redirect / Go to a specific URL
Specify the path of the second page as the URL which will be created in the second part of this code example. You can come back and set this URL after the page is created.

	Appearance
	Text
	Next

	Behavior
	Button-CausesValidation
	True
This ensures the data on the first page will be validated before the second page is displayed.

Step 6: Override the Button_Click() method in the AddCustomer class in the first page, located in:
<App Folder>\Customers\AddCustomers.aspx.cs or .vb
Handle the command for the button as shown below. In this function, the data values are stored in session variables.
C#:
public void Button_Click(object sender, EventArgs args)
{
	//store data in session variables
	System.Web.HttpContext.Current.Session["Customer"] = this.CustomerID.Text;
	System.Web.HttpContext.Current.Session["CompanyName"] = this.CompanyName.Text;
	System.Web.HttpContext.Current.Session["ContactName"] = this.ContactName.Text;
	System.Web.HttpContext.Current.Session["ContactTitle"] = this.ContactTitle.Text;

	Button_Click_Base(sender, args);
}
Visual Basic .NET:
Public Sub Button_Click(ByVal sender As Object, ByVal args As EventArgs)
	System.Web.HttpContext.Current.Session("Customer") = Me.CustomerID.Text
	System.Web.HttpContext.Current.Session("CompanyName") = Me.CompanyName.Text
	System.Web.HttpContext.Current.Session("ContactName") = Me.ContactName.Text
	System.Web.HttpContext.Current.Session("ContactTitle") = Me.ContactTitle.Text
	Button_Click_Base(sender, args)
End Sub
Creating the final page in the wizard
If you have more than two pages in your wizard, all pages except the last one will be similar to the first page described above. They all contain a Next button that is handled in the Page class to save their values in session variables. The final wizard page is different from the other pages because it must collect data values saved in the session variables in the previous pages and save this data to the database. In our example, a Customers record is added to the database.
Step 1: Create an Add Record page using the Application Wizard in Iron Speed Designer. For this example, use the Customers table in the Northwind database and will call this page AddCustomers2.aspx.
Step 2: In the Layout Editor, select Record panel and remove the CustomerID, CompanyName, ConctactName, and ContactTitle fields.
Step 3: Override the GetUIData() method in the CustomerRecordControl class, located in:
<App Folder>\App_Code\Customers\AddCustomers2.Controls.cs or .vb
In this method we collect data from the second wizard page and add the data values from first page that were saved in session variables.
C#:
public override void GetUIData()
{
	this.DataSource.CustomerID =System.Web.HttpContext.Current.Session["Customer"].ToString();
	this.DataSource.CompanyName = System.Web.HttpContext.Current.Session["CompanyName"].ToString();
	this.DataSource.ContactName = System.Web.HttpContext.Current.Session["ContactName"].ToString();
	this.DataSource.ContactName = System.Web.HttpContext.Current.Session["ContactTitle"].ToString();

base.GetUIData();
}
Visual Basic .NET:
Public Overrides Sub GetUIData()
	Me.DataSource.CustomerID = System.Web.HttpContext.Current.Session("Customer").ToString()
	Me.DataSource.CompanyName = System.Web.HttpContext.Current.Session("CompanyName").ToString()
	Me.DataSource.CompanyName = System.Web.HttpContext.Current.Session("ContactName").ToString()
	Me.DataSource.CompanyName = System.Web.HttpContext.Current.Session("ContactTitle").ToString()

	MyBase.GetUIData()
End Sub
By default, the Save button in the last wizard page will point to the previous page. In this case, you might want to modify the properties of the Save button to point to a Table Report page instead.
Step 4: Finally, build and run the application.

[bookmark: _Toc48633574][bookmark: _Ref48633958][bookmark: _Toc53046350][bookmark: _Ref69106132][bookmark: _Toc96318912][bookmark: _Toc234739437][bookmark: _Ref234739632][bookmark: _Toc412569602][bookmark: _Toc414866305]Creating a Custom Large List Selector
Updated August 18, 2012
Iron Speed Designer V9.2 and later
In some applications, end users may have to choose a value from a list of thousands or perhaps millions of values. These values cannot be realistically displayed in a dropdown list or a listbox on a web page. When the number of values exceeds 100 (an adjustable default), Iron Speed Designer automatically displays a Large List Selector next to the dropdown list control. The large list selector threshold can be changed by modifying the “Maximum generated items” property. However, the default large list selector may not be ideal in all situations because you may want to display additional columns, or provide different searching and filtering capabilities than provided by the default large list selector. This is fairly easy to accomplish in Iron Speed Designer. You can create a custom Table Report page and use this as a custom large list selector by making slight modifications to the layout.
This example shows how to create a “Customer Selector” page that can be displayed in a popup window, and that contains links that populate a text box in the opening page when clicked. This example can be added to the AcmeOMS sample application included with Iron Speed Designer.
To create a custom large list selector, modify the page to display a Lookup link. This link will open the large list selector and pass the associated text box field as a “target” to receive the selected value. The large list selector page is a standard Table Report page modified to display a Select link. When the user clicks on the Select link, a small Javascript function sets the selected value in the target text box. The following step-by-step instructions walk through each modification.
The Add Order page below was modified to display a Text Box for the Customer field followed by a Lookup hyperlink. The Lookup hyperlink will allow the end user to search and select a customer from a popup window.
[image:]

Browser Support
This customization works for Microsoft Internet Explorer and Google Chrome; it does not work in Mozilla Firefox because Firefox does not recognize the “window.opener.document.all” a function used in the script.
Procedure
Step 1: Select the page in Iron Speed Designer’s Application Explorer where you would like to display the Lookup link, e.g.:
...\Sample Applications\AcmeOMS\Orders\AddOrders.aspx
Step 2: In the Layout Editor, select the CustomerID control and change the Control Type property to “Textbox” via the Property Sheet.
 [image:]
Step 3: Drag a GEN:LinkButton from the Toolbox to the cell containing the CustomerID text box. Use the Property Sheet to configure the LinkButton, e.g.:
 [image:]
Step 4: Build your application. This is important because you need code updated for both the LinkButton and CustomerID controls before proceeding to the next step.
Step 5: Zoom out to the page level using the page section list, e.g.: AddOrders.aspx. Then select the cell containing the record control which contains the newly added link button. Finally, in the Load code tab, add this code to the beginning:
C#:
if(this.DataSource != null) this.LinkButton.Attributes["onClick"]= "OpenCustomerSelector('" + this.CustomerID.ClientID + "');return false;";
Visual Basic .NET:
If Not Me.DataSource Is Nothing Then
	Me.LinkButton.Attributes.Add("onClick", "OpenCustomerSelector('" & Me.CustomerID.ClientID & "');return false;")
End If
Note that C# pages refer to the page class as “this” and Visual Basic .NET refers to them as “Me”. Also note that C# is case sensitive, so ClientID must be specified with ID in upper case.
 [image:]
If your CustomerID text box is inside a table, then you need to add the above code to Row’s Load event, in this example to CustomersTableControlRow. To do that you need to override:
Control_Load(object sender, EventArgs e) (C#)
Control_Load(ByVal sender As Object, ByVal e As System.EventArgs) (VB.NET)
In Section 1 (in CustomersTableControlRow class) : copy all content of the existing method (in BaseCustomersTableControlRow) and add the code above.
Step 6: Create a new Table Report page that will be displayed when the application user clicks the Lookup hyperlink. The easiest way to create this page is to right click on the Orders folder, select New, Page, Blank master page since no header, footer or menu is required on the pop-up window. Name this new page “CustomerLargeListSelector.aspx” to match URL target in step 12.
Step 7: In the new Table Report page, drag a Customers Table Report panel from the Toolbox (Reports & Forms, Report for…, Unrelated tables) into the first cell of the page.
Step 8: Insert a new column to the left of the first column of the panel. Drag a LinkButton control from the Toolbox into the repeater cell. Configure the newly added control via the Property Sheet:
[image:]
Step 9: Build the application to update its code.
Step 10: Add javascript to the onclick attribute of the newly added button by overriding the DataBind event for the row (i.e. for CustomersTableControlRow) in Section 1 of the Controls.cs (.vb) file:
C#:
public class CustomersTableControlRow : BaseCustomersTableControlRow
{
	// The BaseCustomersTableControlRow implements code for a ROW within the
	// the CustomersTableControl table. The BaseCustomersTableControlRow implements the DataBind and SaveData methods.
	// The loading of data is actually performed by the LoadData method in the base class of CustomersTableControl.
	// This is the ideal place to add your code customizations. For example, you can override the DataBind,
	// SaveData, GetUIData, and Validate methods.

 //add the following code
	public override void DataBind()
	{
		base.DataBind();
		if(this.DataSource != null) this.LinkButton.Attributes.Add("onClick", "UpdateTarget('" + this.DataSource.CustomerID.ToString() + "');return false;");
	}

}
Visual Basic .NET:
Public Class CustomersTableControlRow
Inherits BaseCustomersTableControlRow
	' The BaseCustomersTableControlRow implements code for a ROW within the
	' the CustomersTableControl table. The BaseCustomersTableControlRow implements the DataBind and SaveData methods.
	' The loading of data is actually performed by the LoadData method in the base class of CustomersTableControl.
	' This is the ideal place to add your code customizations. For example, you can override the DataBind,
	' SaveData, GetUIData, and Validate methods.

 ‘ add the following code
	Public Overrides Sub DataBind()
		MyBase.DataBind()
		If Not Me.DataSource Is Nothing Then
			Me.LinkButton.Attributes.Add("onClick", "UpdateTarget('" & Me.DataSource.CustomerID.ToString() & "');return false;")
		End If
	End Sub

End Class
Step 11: Add the following Javascript client script code to the master page for AddOrders.aspx (HorizontalMenu.master in this example) via the Page Directives dialog (Right-click, Page Directives…).
<script type="text/javascript" language="javascript">
function OpenCustomerSelector(target)
{
	var url = '../Orders/CustomerLargeListSelector.aspx?target=' + target; window.open(url, '', 'width=550, height=400, resizable=yes, scrollbars=yes, modal=yes');
}
</script>
The Javascript defines a function called OpenCustomerSelector that takes a parameter called “target”. The function opens a browser window for a URL passing the “target” URL parameter. The “target” URL parameter is the ClientID of the text box that will receive the selected value. In the AcmeOMS example, this would be the CustomerID text box displayed on the Add Orders page that will receive the selected value.
[image:]
Step 12: Now add similar Javascript for the UpdateTarget function to the Page Directives of Blank master page (Blank.master).
C#
<script type="text/javascript" language="javascript">
function UpdateTarget(selectedValue)
{
	var target = window.opener.document.all('<%# Request.Params["target"] %>');
	target.value = selectedValue; window.close();
}
</script>
Visual Basic .NET
<script type="text/javascript" language="javascript">
function UpdateTarget(selectedValue)
{
	var target = window.opener.document.all('<%# Request.Params("target") %>');
	target.value = selectedValue; window.close();
}
</script>
The above Javascript defines a function called UpdateTarget that takes a parameter called “selectedValue”. The function retrieves the “target” URL parameter from the URL and sets the .value to the selectedValue parameter passed to the function. Once the value for the target variable is set, the current pop-up window is closed.
Step 13: Use the Property Sheet to bind the CustomerID control to display the ID of the customer for each row.
Step 14: By default all pages displayed will be added to the session navigation history so that pressing the Cancel button on the page will go back to the previous page. To ensure the pop-up window is not added to the session navigation history, override the UpdateSessionNavigationHistory function to not call the underlying base function that adds this page to the history.
Add the override in the code-behind file for the CustomerLargeListSelector.aspx page, e.g.: CustomerLargeListSelector.aspx.cs (.vb).
C#:
protected override void UpdateSessionNavigationHistory()
{
	// do nothing
}
Visual Basic .NET:
Protected Overrides Sub UpdateSessionNavigationHistory()
	'Do nothing
End Sub
Step 15: Build and run your application. The Customer Large List Selector page is now ready to use.

[bookmark: _Ref92088795][bookmark: _Toc95816407][bookmark: _Ref132793645][bookmark: _Toc412569603][bookmark: _Toc414866306]Customizing the Data Access Layer
Updated June 5, 2006
Iron Speed Designer V4.0 and later
If you are not yet familiar with the Data Access Layer class hierarchy, the following will help you get started.
The BaseClasses.IrelationalDataAdapter interface defines methods for inserting, updating, deleting, and retrieving records from a database. If you create an application that uses stored procedures in Microsoft SQL Server, the implementation of the IrelationalDataAdapter interface that your application uses is found in the BaseClasses.Data.SqlProvider.StoredProceduresSQLServerAdapter class, located in:
...\<Designer>\BaseClasses\Data\SqlProvider\ StoredProceduresSQLServerAdapter.vb
Basic Data Access Layer Customization Examples
Overriding the GetRecordValues Function
Overriding the InsertRecord Function

[bookmark: _Ref132796537][bookmark: _Toc412569604][bookmark: _Toc414866307]Overriding the GetRecordValues Function
You can call custom stored procedures by overriding various functions in the Data Access Layer. This example overrides the GetRecordValues function, calls a custom stored procedure (one not created by Iron Speed Designer) using ADO.NET, and populates a table control.
The table used in this example is “MyShippers”.
	Column Name
	Data Type
	Length

	ShipperID (PK) Identity
	int
	4

	CompanyName
	nvarchar
	40

	Phone
	nvarchar
	24

The name of the stored procedure is “spGetShippersRecords”.
CREATE PROCEDURE spGetShippersRecords
AS
SELECT * FROM MyShippers
ORDER BY CompanyName
GO
Step 1: Create an application using the MyShippers table.
Step 2: Locate the MyShippersSqlTable.cs file.
<Application Folder>\App_Code\Data Access Layer\MyShippersSqlTable.cs
Step 3: Override the GetRecordValues function in the MyShippersSqlTable class in MyShippersSqlTable.cs or .vb.
C#:
Insert the following lines at the top of.MyShippersSqlTable.cs.
using BaseClasses.Data;
using BaseClasses.Data.SqlProvider;
using System.Data;
using System.Data.SqlClient;
Add the code below in the MyShippersSqlTable class.
public override System.Collections.ArrayList GetRecordValues(BaseClasses.Data.TableDefinition table,
		BaseClasses.Data.SqlBuilderColumnSelection requestedSelection ,
		BaseClasses.Data.SqlBuilderColumnSelection workingSelection,
		BaseClasses.Data.SqlBuilderColumnSelection distinctSelection,
		BaseClasses.Data.BaseFilter filter,
		BaseClasses.Data.OrderBy sortOrder,
		int startIndex,
		int count,
		ref int totalCount)
{
	System.Collections.ArrayList resultList = new System.Collections.ArrayList();
	int i;
	System.Data.SqlClient.SqlDataReader reader;

	//Step1: Create a sql connection object
	System.Data.SqlClient.SqlConnection objConn = new System.Data.SqlClient.SqlConnection();

	//Step2: Set the connection string
	objConn.ConnectionString = "server=(local); database=Northwind; uid=sa;pwd=;";

	//Step3: Open the connection
	objConn.Open();

	//Step4. Create a sql command object
	System.Data.SqlClient.SqlCommand objCmd = new
		System.Data.SqlClient.SqlCommand("spGetShippersRecords",objConn);

	//Step5: Set the CommandType as Stored Procedure
	objCmd.CommandType = System.Data.CommandType.StoredProcedure;

	//Step6: Execute the stored Procedure
	reader = objCmd.ExecuteReader();

	try
	{
		object[] vals;
		vals =(object[])System.Array.CreateInstance(typeof(object), reader.FieldCount);
		while(reader.Read())
		{
			//create a RecordValue obj
			RecordValue recVal = new RecordValue(vals.Length);
			int numVals;
			numVals = reader.GetValues(vals);

			//Get the column values and set the values in the RecordValue object
			for(i = 0 ;i<= (numVals - 1);i++) {
				recVal.ColumnValues[i] = new ColumnValue(reader.GetValue(i));
				recVal.ColumnValues[i].Value = reader.GetValue(i);
			}
			//Add the RecordValue object to the ArrayList
			resultList.Add(recVal);
		}
	}
	catch(System.Exception ex)
	{
		string errStr = ex.GetBaseException().ToString();
	}
	
	//Close the reader object
	reader.Close();

	//Close the connection object
	objConn.Close();

	totalCount = resultList.count;

	//Return the ArrayList
	return resultList;
}
Visual Basic .NET:
Public Overrides Function GetRecordValues(_
	ByVal table As BaseClasses.Data.TableDefinition, _
	ByVal requestedSelection As BaseClasses.Data.SqlBuilderColumnSelection, _
	ByVal workingSelection As BaseClasses.Data.SqlBuilderColumnSelection, _
	ByVal distinctSelection As BaseClasses.Data.SqlBuilderColumnSelection, _
	ByVal filter As BaseClasses.Data.BaseFilter, _
	ByVal sortOrder As BaseClasses.Data.OrderBy, _
	ByVal startIndex As Integer, ByVal count As Integer, ByRef totalCount As Integer) _
	As System.Collections.ArrayList

	Dim resultList As New ArrayList
	Dim i As Integer
	Dim reader As System.Data.SqlClient.SqlDataReader
	'Step1: Create a sql connection object
	Dim objConn As System.Data.SqlClient.SqlConnection = New System.Data.SqlClient.SqlConnection
	
	'Step2: Set the connection string
	objConn.ConnectionString = "server=(local); database=Northwind; uid=sa;pwd=;"
	
 	Try
		'Step3: Open the connection
		objConn.Open()

		'Step4. Create a sql command object
		Dim objCmd As System.Data.SqlClient.SqlCommand = New
			System.Data.SqlClient.SqlCommand("spGetShippersRecords", objConn)

		'Step5: Set the CommandType as Stored Procedure
		objCmd.CommandType = System.Data.CommandType.StoredProcedure

		'Step6: Execute the stored Procedure
		reader = objCmd.ExecuteReader()

		Dim vals() As Object
		vals = DirectCast(System.Array.CreateInstance(GetType(Object), reader.FieldCount), Object())

		While reader.Read()

			'create a RecordValue obj
			Dim recVal As RecordValue = New RecordValue(vals.Length)
			Dim numVals As Integer
			numVals = reader.GetValues(vals)

			'Get the column values and set the values in the RecordValue object
			For i = 0 To (numVals - 1)
				recVal.ColumnValues(i) = New ColumnValue(reader.GetValue(i))
				recVal.ColumnValues(i).Value = reader.GetValue(i)
			Next

			'Add the RecordValue object to the ArrayList
			resultList.Add(recVal)
		End While

	Catch ex As Exception
		Dim myStr As String = ex.GetBaseException.ToString
	End Try

	'Close the reader object
	reader.Close()

	'Close the connection object
	objConn.Close()

	totalCount = resultList.count

	'Return the ArrayList
	Return resultList

End Function
Step 4: Build and run the application.
This stored procedure does not have input or output parameters. The result obtained by executing the stored procedure is passed as an ArrayList which is used to populate the table control.
Note that this simple example does not implement paging, sorting or search functionality. If you want your table control to support these features, you will have to add custom code.
Other functions you can override in the Data Access Layer are:
· InsertRecord
· UpdateRecord
· DeleteRecords

[bookmark: _Ref132796539][bookmark: _Toc412569605][bookmark: _Toc414866308]Overriding the InsertRecord Function
You can call your stored procedures by overriding various functions in the Data Access Layer. This example overrides the InsertRecord function and calls a custom stored procedure (one not created by Iron Speed Designer) using ADO.NET to insert a new record.
The table used in this example is “MyShippers”.
	Column Name
	Data Type
	Length

	ShipperID (PK) Identity
	Int
	4

	CompanyName
	nvarchar
	40

	Phone
	nvarchar
	24

The name of the stored procedure is “spAddShippers”.
CREATE PROCEDURE spAddShippers
	@CompanyName nvarchar(40),
	@Phone nvarchar(24),
	@ShipperID int output
AS
	INSERT
	INTO MyShippers VALUES (@CompanyName, @Phone)

	set @ShipperID = SCOPE_IDENTITY()
GO
This stored procedure takes two input parameters, CompanyName and Phone, and one output parameter, ShipperID.
Step 1: Create an application using the MyShippers table.
Step 2: Locate the MyShippersSqlTable.cs file located in:
<Application Folder>\App_Code\Data Access Layer\MyShippersSqlTable.cs
Step 3: Override the InsertRecord function in the MyShippersSqlTable class.
C#:
Insert the following lines at the top of the MyShippersSqlTable.cs file.
using System;
using System.Collections;
using System.Data;
using BaseClasses.Data;
using BaseClasses.Data.SqlProvider;
using BaseClasses.Utils;
Add the code below in the MyShippersSqlTable class.
public override BaseClasses.Data.KeyValue InsertRecord(BaseClasses.Data.TableDefinition table,
		BaseClasses.Data.RecordValue recVal,
		bool[] columnsChanged)
{
	KeyValue retKeyVal = new KeyValue();

	//Step1:Create a connection string
	string connectionString = "server=(local);uid=sa;pwd=; database=Northwind";

	//Step2:Create a connection object, initialize it with the //connection string.
	System.Data.SqlClient.SqlConnection connection = new System.Data.SqlClient.SqlConnection(connectionString);

	//Step3:create a command object
	System.Data.SqlClient.SqlCommand command = new System.Data.SqlClient.SqlCommand();

	//Step4:create a transaction object
	System.Data.SqlClient.SqlTransaction transaction;
		
	//Open the connection.
	connection.Open();

	transaction = connection.BeginTransaction();
	command.Transaction = transaction;
	command.Connection = connection;

	try
	{
		command.CommandText = "spAddShippers";
		command.CommandType = CommandType.StoredProcedure;

		System.Data.SqlClient.SqlParameter param;

		//Set input param CompanyName
		param = command.Parameters.Add("@CompanyName", SqlDbType.NVarChar, 40);
		param.Direction = ParameterDirection.Input;
		param.Value = recVal.ColumnValues[1].Value;

		//Set input param Phone
		param = command.Parameters.Add("@Phone", SqlDbType.NVarChar, 24);
		param.Direction = ParameterDirection.Input;
		param.Value = recVal.ColumnValues[2].Value;

		//Set output param ShipperID
		param = command.Parameters.Add("@ShipperID", SqlDbType.Int);
		param.Direction = ParameterDirection.Output;

		//Step5:Execute the stored Procedure
		command.ExecuteNonQuery();
		transaction.Commit();

		//Step6:Retrieve the ShipperID
		int myShipperID = (int)(command.Parameters["@ShipperID"].Value);

		if (table.IsHasPrimaryKey)
		{
			retKeyVal.AddElement("ShipperID", myShipperID.ToString());
		}
	}
	catch (System.Exception e)
	{
		transaction.Rollback();
	}

	//close the connection
	connection.Close();
	return retKeyVal;
}
Visual Basic .NET:
Public Overrides Function InsertRecord(_
	ByVal table As BaseClasses.Data.TableDefinition, _
	ByVal recVal As BaseClasses.Data.RecordValue, _
	ByVal columnsChanged() As Boolean) _
	As BaseClasses.Data.KeyValue

	Dim retKeyVal As KeyValue = New KeyValue

	'Step1:Create a connection string
	Dim connectionString As String = "server=(local);uid=sa;pwd=; database=Northwind"

	'Step2:Create a connection object, initialize it with the //connection string.
	Dim connection As System.Data.SqlClient.SqlConnection = New System.Data.SqlClient.SqlConnection(connectionString)

	'Step3:create a command object
	Dim command As System.Data.SqlClient.SqlCommand = New System.Data.SqlClient.SqlCommand

	'Step4:create a transaction object
	Dim transaction As System.Data.SqlClient.SqlTransaction

	'Open the connection.
	connection.Open()

	transaction = connection.BeginTransaction()
	command.Transaction = transaction
	command.Connection = connection

	Try
		command.CommandText = "spAddShippers"
		command.CommandType = System.Data.CommandType.StoredProcedure

		Dim param As System.Data.SqlClient.SqlParameter

		'Set input param CompanyName
		param = command.Parameters.Add("@CompanyName", System.Data.SqlDbType.NVarChar, 40)
		param.Direction = System.Data.ParameterDirection.Input
		param.Value = recVal.ColumnValues(1).Value

		'Set input param Phone
		param = command.Parameters.Add("@Phone", System.Data.SqlDbType.NVarChar, 24)
		param.Direction = System.Data.ParameterDirection.Input
		param.Value = recVal.ColumnValues(2).Value

		'Set output param ShipperID
		param = command.Parameters.Add("@ShipperID", System.Data.SqlDbType.Int)
		param.Direction = System.Data.ParameterDirection.Output

		'Step5:Execute the stored Procedure
		command.ExecuteNonQuery()
		transaction.Commit()

		'Step6:Retrieve the ShipperID
		Dim myShipperID As Integer = CType(command.Parameters("@ShipperID").Value, Integer)

		If table.IsHasPrimaryKey Then
			retKeyVal.AddElement("ShipperID", myShipperID.ToString)
		End If

	Catch ex As Exception
		Dim myexp As String = ex.GetBaseException.ToString
		transaction.Rollback()
	End Try

	'close the connection
	connection.Close()

	Return retKeyVal

End Function
Step 4: Build and run the application.
Other functions that you can override in the Data Access Layer are:
· InsertRecord
· UpdateRecord
· DeleteRecords

[bookmark: _Toc38781619][bookmark: _Toc40003133][bookmark: _Toc40164410][bookmark: _Toc43718862][bookmark: _Toc46553270][bookmark: _Ref48544451][bookmark: _Toc53046355][bookmark: _Toc95816470][bookmark: _Toc412569606][bookmark: _Toc414866309]Customizing the Default Error Message
Updated March 9, 2010
Iron Speed Designer V7.0 and later
You can change the data validation error message by setting the ErrorMessage and Text properties of a Validator control. The ErrorMessage property of a validation control is displayed in a pop-up window while the Text property is displayed at the location of the validator on the web page. These properties are set at design time, and can be changed via the the Property Sheet for the selected control.
[bookmark: _Toc46553271]The following example illustrates how to change or replace the default error message text for the Product Name field in the AddProduct.aspx page in a sample application. The default error message would say, ‘A value for Product Name is required’.
Application Page
If you try to add a new record without a Product Name, you will see your custom error message displayed like this:
[image:]
Procedure
Step 1: In the Layout Editor, open the AddProduct.aspx page and select the ProductName control.
Step 2: In the Property Sheet, add or modify the properties that begin with “ProductNameRequiredFieldValidator:” to specify the properties of the tag’s RequiredFieldValidator. For a more generic example:
	Property
	Value

	<YourFieldName>RequiredFieldValidator:Enabled
	True

	<YourFieldName>RequiredFieldValidator:ErrorMessage
	A value for Product Name is required to process your order.
Enter a custom error message of your choosing.

	<YourFieldName>RequiredFieldValidator:Text
	*
(asterisk character)

Step 3: Build and run the application.

[bookmark: _Toc104207492][bookmark: _Toc104267798][bookmark: _Toc104634716][bookmark: _Ref157426739][bookmark: _Toc412569607][bookmark: _Toc104137551][bookmark: _Toc104207624][bookmark: _Toc104267791][bookmark: _Toc104634711][bookmark: _Toc104207603][bookmark: _Toc104267770][bookmark: _Toc104634696][bookmark: _Toc104137560][bookmark: _Toc104207606][bookmark: _Toc104267773][bookmark: _Toc104634699][bookmark: _Toc414866310]Disable ValidationSummary and JavaScript for a Page
Updated June 5, 2006
Iron Speed Designer V4.0 and later
There are a variety of reasons you might want to disable validation summary and client-side JavaScript for a page. In some situations, security concerns make it important to disable client-side JavaScript. In other situations, you might want to customize an error message to be more meaningful or explanatory.
The basic strategy is to handle your web page’s Init method and set the properties of the ValidationSummary control accordingly. Iron Speed Designer places a ValidationSummary control on every page, usually named “ValidationSummary1”. This control collectively represents the validation controls that have been defined for all fields in the page and is used to present a summary of the error messages from all these validators in a single location. The summary can be displayed as a list, as a bulleted list, or as a single paragraph based on the DisplayMode property of the ValidationSummary control. To prevent this error summary dialog from appearing, disable the control and make it invisible. The examples below show how to alter these and other properties of this control.
C#:
public class AddCategories : BaseAddCategoriesPage
{
	public AddCategories()
	{
		this.Init += new EventHandler(Page_Init);
	}
	// Occurs when the server control is initialized, which is the first step in the page’s lifecycle.
	private void Page_Init(object sender, System.EventArgs e)
	{
		// Select the type of display (list, bulleted list, or single paragraph) using the DisplayMode property.
		this.ValidationSummary1.DisplayMode = ValidationSummaryDisplayMode.BulletList;
		// The HeaderText property helps specify a message
		this.ValidationSummary1.HeaderText = "The following fields must have a value";
		// Hide the visibility of the control
		this.ValidationSummary1.Visible = false;
		// Disable the control
		this.ValidationSummary1.Enabled = false;
	}
} // End class AddCategories
Visual Basic .NET:
Private Sub MyPage_Init_DisableValidationSummary(ByVal sender As Object, ByVal e As System.EventArgs)
		Handles MyBase.Init
		‘Select the type of display (list, bulleted list, or single paragraph) using the DisplayMode property.
		Me.ValidationSummary1.DisplayMode = ValidationSummaryDisplayMode.BulletList
		‘ The HeaderText property helps specify a message
		Me.ValidationSummary1.HeaderText = "The following fields must have a value"
		' Hide the visibility of the control
		Me.ValidationSummary1.Visible = False
		' Disable the control
		Me.ValidationSummary1.Enabled = False
End Sub
Disabling JavaScript on a page
Any BaseClasses control trying to register the client script will invoke the RegisterClientFocusScript and RegisterClientScript functions. In order to disable JavaScript for the page, override these methods and do not perform any operation within them. This ensures the JavaScript does not get registered (and hence not enabled) for the page.
C#:
protected override void RegisterClientFocusScript()
{
	// Do nothing
}
protected override void RegisterClientScript()
{
	// Do nothing
}
Visual Basic .NET:
Protected Overrides Sub RegisterClientFocusScript()
	'Do nothing
End Sub

Protected Overrides Sub RegisterClientScript()
	'Do nothing
End Sub

[bookmark: _Toc104634726][bookmark: _Ref157426741][bookmark: _Toc412569608][bookmark: _Toc414866311]Disable View State for a Page
Updated June 5, 2006
Iron Speed Designer V4.0 and later
The ASP.NET view state is the technique used by an ASP.NET Web page to persist changes to the state of a Web Form across postbacks. The view state of a page is, by default, placed in a hidden form field named __VIEWSTATE. This hidden form field can easily get very large, on the order of tens of kilobytes. Not only do large view states cause slower downloads, they also lengthen postback request times because the contents of this hidden form field must be included in the HTTP post back request. Unlike most other features of ASP.NET, view state can impact web pages dramatically, not only be in page size but also in server side performance. Moreover, pages with large view states can throw unexpected errors.
A key thing to remember is that view state is enabled by default for every control on every page. Since many server controls defined on a page contribute to view state size, your page’s view state will grow very large and impact performance if left unchecked.
When to disable view state
You can disable a control's view state if the control does not contain any dynamic data, its value is hardcoded, or its value is assigned on every page request and you're not handling its events.
A good example of a big consumer of view state is .NET’s DataGrid control. It is desirable to disable view state for a page if the page does not post back. However, if the DataGrid has sorting or paging enabled, then enabling view state is desirable.
When you complete a web page, review the controls in the page and consider what information is being passed in the view state and whether you really need all that information to be maintained. To optimize web page size, consider disabling view state in these cases:
· When a page does not postback to itself
· When there are no dynamically set control properties
· When the dynamic properties are set with each request of the page
How to disable view state on a page
To disable a page’s View State, add the code below in the Page class of the page. In this example, the page’s class name is ShowOrdersTable.
C#:
public ShowOrdersTable()
{
	this.Init += new EventHandler(Page_Init);
}

private void Page_Init(object sender, System.EventArgs e)
{
	this.EnableViewState = false;
}
Visual Basic .NET:
' Disable the View State in the page.
Private Sub MyPage_Init_DisableViewState(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Init
	Me.EnableViewState = False
End Sub

[bookmark: _Toc104378445][bookmark: _Toc104382229][bookmark: _Ref104621442][bookmark: _Ref214946890][bookmark: _Toc234734473][bookmark: _Ref234734835][bookmark: _Toc412569609][bookmark: _Toc414866312]Expanding / Collapsing Sections on a Page
Updated July 6, 2009
Iron Speed Designer V6.2 and later
You may find it useful expand / collapse sections of a web page. While there is no direct support of this in Iron Speed Designer, you can easily add this using Dynamic HTML to your page.
Step 1: Uniquely name each expandable/collapsible region with an "id" attribute, e.g.:
<table id="region1"...>
This is easily accomplished by adding ‘id’ attributes via the Tag Attributes dialog (Right-click, Styles, Table… etc.)
Step 2: When the user clicks the expand/collapse icon, catch the event and call the "toggling function", e.g.:
onclick="hisExpandCollapseFunction()"
The event should also be consumed so as not to be allowed to propagate to its parent container, which may also have its own onclick eventhandler. This is, in fact, the case if you embed your own regions within Record and Table panels created by Iron Speed Designer.
Step 3: In the toggling function, locate the region to be toggled, e.g.:
document.getElementById("region1")
Step 4: In the toggling function, toggle the region’s visibility. For example, to show or expand the region, set:
region1.style.display = "block"
To hide or collapse the region, set:
region1.style.display = "none"
You can search on the Internet to find code snippets that perform this function. One such link is:
http://www.jalfrezi.com/frames/fdhtml.htm
See the section on Expanding/collapsing outlines.

[bookmark: _Toc104286941][bookmark: _Ref132015483][bookmark: _Ref157426759][bookmark: _Toc412569610][bookmark: _Toc104137559][bookmark: _Toc104207605][bookmark: _Toc104267772][bookmark: _Toc104634698][bookmark: _Toc414866313]Handling Button Events
Upated March 30, 2010
Iron Speed Designer V7.0 and later
It is often useful to call custom logic when a button is clicked in your application:
· Display a message after deleting a record.
· Send an email confirmation after adding a record or deleting a record.
· Handle a custom command.
A good way to catch the relevant button events is by overriding the button click method and calling your custom logic. Or, you can add a new button and add functionality to that button. Individual pages may contain different Table controls, so make sure you override the button click method in the appropriate table control class.
Handling a Button Click Event for a TableControl Class
In the example below, a message is displayed to the user after deleting a row in an application built using the Orders table in the Northwind database. Since the Delete Button event is at the table control level, the DeleteButton_Click() method is overridden in the OrdersTableControl class, located in:
<App Folder>\App_Code\Orders\ShowOrdersTable.Controls.cs or .vb
Add the following code to the OrdersTableControl class.
C#:
public override void OrdersDeleteButton_Click(object sender, EventArgs args)
{
	base.OrdersDeleteButton_Click (sender, args);
	BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(this,"MY_KEY","DELETED");
}
Visual Basic .NET:
Public Overrides Sub OrdersDeleteButton_Click(ByVal sender As Object, ByVal args As EventArgs)
	MyBase.OrdersDeleteButton_Click(sender, args)
	BaseClasses.Utils.MiscUtils.RegisterJScriptAlert(Me, "MY_KEY", "DELETED")
End Sub
Important: If the button is set to redirect to another page in the Property Sheet, then calling the base click method will redirect to this page and any code placed after the call to the base click method will not be executed.
Handling a Button Click Event for an Add Record Page Class
In the example below, when a user attempts to add a new Order in an Add Record page without specifying the ShipPostalCode value and clicks the “Save” button, the Order is not saved and, instead, the user is redirected back to the previous page (typically the Show Orders Table page). Add this code customization to the AddOrder class, located in:
<App Folder>\Orders\AddOrders.aspx.cs or .vb
C#:
public void SaveButton_Click(object sender, EventArgs args)
{
	if (this.ShipPostalCode.Text == "")
	{
		this.RedirectBack();
	}
	SaveButton_Click_Base(sender, args);
}
Visual Basic .NET
Public Sub SaveButton_Click(ByVal sender As Object, ByVal args As EventArgs)
	If (Me.ShipPostalCode.Text = "") Then
		Me.RedirectBack
	End If
	SaveButton_Click_Base(sender, args)
End Sub
Important: If the button is set to redirect to another page in the Property Sheet, then calling the base click method will redirect to this page and any code placed after the call to the base click method will not be executed.
In the example below, a new button called “Fill Default Value” has been added to an Add Record page. When the button is clicked, a default value of “99999” is inserted into the ShipPostalCode text box field.
Step 1: Use the Application Explorer to open an Add Record page.
Step 2: In the Layout Editor, select the Page Buttons area. Drag a Button control from the Toolbox and place it next to the Cancel button.
Step 3: Select select the new button control and set these properties via the Property Sheet:
	Group
	Property
	Setting

	[Application Generation]
	Button actions
	Custom

	Appearance
	Text
	Fill Default Value

Step 4: Add the following code in the AddOrders class, located in:
...<App Folder>\Orders\AddOrders.aspx.cs or .vb
C#
public void Button_Click(object sender, EventArgs args)
{
	Button_Click_Base(sender, args);
	this.ShipPostalCode.Text = "99999";
}
Visual Basic .NET:
Public Sub Button_Click(ByVal sender As Object, ByVal args As EventArgs)
	Button_Click_Base(sender, args)
	Me.ShipPostalCode.Text = "99999"
End Sub
Step 5: Bulid and run your application.

[bookmark: _Toc105852460][bookmark: _Ref157426763][bookmark: _Toc412569611][bookmark: _Toc104207505][bookmark: _Toc104267799][bookmark: _Toc104634717][bookmark: _Toc414866314]Modify the RedirectURL Property of a Menu
Updated June 5, 2006
Iron Speed Designer V4.0 and later
To dynamically modify the redirect URL of a menu item for a specific page, you can handle the PreRender event for the Menu.ascx control (in Menu.ascx.cs or menu.ascx.vb). Then you can modify the RedirectUrl property for the specific menu item. This code for classic menu would look something like:
Me.Menu.Menu1MenuItem.Button.RedirectUrl = "http://...?Session=" & SessionVar
Me.Menu gives you the menu and Menu1MenuItem gives you the first menu item. You can use Menu2/3/4/etc. for the appropriate menu item in the menu. Menus are really buttons, so you need to access the button control inside the menu item. Use the Me.Menu.Button property for this. Then, set the RedirectUrl for the button (menu).
In the example above, RedirectUrl is set to a URL composed using information stored in a session variable. However, you can compose the URL in a manner of your choosing.
Please note that you should also set the RedirectUrl for the highlighted version of the menu as well:
Me.Menu.Menu1MenuItemHilited.Button.RedirectUrl = "http://...?Session=" & SessionVar
For multilevel menu you need to use different class:
Me.MultiLevelMenu.Items[0].NavigateUrl = "http://...?Session=" & SessionVar
Where MultilevelMenu.Items is a collection of items, each of them has its own collection as well.

[bookmark: _Ref63508803][bookmark: _Ref64199822][bookmark: _Toc64442246][bookmark: _Toc74401637][bookmark: _Toc74456386][bookmark: _Toc236828956][bookmark: _Toc412569612][bookmark: _Toc414866315]Opening a Page in a New Browser Window
Updated March 11, 2010
Iron Speed Designer V7.0 and later
Use a Hyperlink control
You can use a Hyperlink control to launch a new browser window when clicking a button.
Step 1: Drag a Hyperlink control from the Toolbox onto your page in the Layout Editor. Note, however, the Hyperlink control is not a data-bound control, so it will not display data from your database as a clickable link.
Step 2: Select the Hyperlink control and set these properties via the Property Sheet:
	Group
	Property
	Setting

	Navigation
	Target
	_blank

Step 3: Build and run your application.
Button controls won’t work
The Button controls such as Link Button, Image Button and Push Button, produce an action that requires a postback because some buttons, such as “OK”, are used to validate and update the database. As such, they do not support redirecting the target to another window. Some of these buttons create an <a href ...> HTML tag, but their OnClick action is set to a JavaScript function to validate data if required.

[bookmark: _Toc129768454][bookmark: _Ref157426783][bookmark: _Toc412569613][bookmark: _Toc104374272][bookmark: _Toc104634725][bookmark: _Toc414866316]Redirect to a Page Based on Logged In User
Updated March 30, 2010
Iron Speed Designer V7.0 and later
It is often useful to dynamically redirect a user to a particular page based on the logged in user ID or logged in user role. For example, when a user clicks a menu item in a classic-style menu, you might redirect to a page showing data only for the logged in user.
Step 1: In the Application Explorer, select Presentation Layer, Menu Panels, Menu.ascx to display the menu control (classic menu style).
Step 2: Select the menu item you wish to modify and set these properties via the Property Sheet.
	Group
	Property
	Setting

	[Application Generation]
	Button actions
	Custom

	[Application Generation]
	Button actions
	Redirect and Send Email Actions
Stay on the current page

Step 3: Select the “Send custom command” option, enter a command name, and select “Page (Advanced)”. When the menu item is clicked, this custom command will be executed.
Step 4: Add the code customization below to Menu.ascx.cs, located in:
<Application Folder>\Menu Panels\Menu.ascx.cs
The simple code customization below assumes you are customizing the Menu2MenuItem control. Modify the code customization to suit your needs.
C#:
public Menu()
{
		this.Init += new System.EventHandler(myInit);
}
private void myInit(object sender,System.EventArgs e)
{
		this.Menu2MenuItem.Button.Click+= new System.EventHandler(Onmenu2MenuItem_Click);
}

private void Onmenu2MenuItem_Click(object sender,System.EventArgs e)
{
	if(this.SecurityControls. GetCurrentUserID() == "ALFKI")
	{
		this.Page.Response.Redirect("http://www.ironspeed.com");
	}
	else
	{
		this.Page.Response.Redirect("http://www.gmail.com");
	}
}
Visual Basic .NET:
Private Sub Page_init(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Init
	AddHandler Menu2MenuItem.Button.Click, AddressOf Menu2MenuItem_click
End Sub

Private Sub menu2menuitem_click(ByVal sender As System.Object, ByVal e As System.EventArgs)
	If (Me.SecurityControls. GetCurrentUserID() = "ALFKI") Then
		Me.Page.Response.Redirect("http://www.ironspeed.com")
	Else
		Me.Page.Response.Redirect("http://www.hotmail.com")
	End If
End Sub
Step 5: Build and run your application.
You can customize this example so the user is redirected only when clicking on Menu2MenuItem on the ShowOrdersTable.aspx page. Instead of placing the code customization in Menu.ascx.cs, place it directly in the PreRender event of the ShowOrdersTable class.
Add your code customization to ShowOrdersTable.aspx.cs, located in:
<Application Folder>\<Table Name>\ShowOrdersTable.aspx.cs
C#:
public ShowOrdersTable()
{
	this.PreRender += new EventHandler(Page_PreRender);
}

private void Page_PreRender(object sender, EventArgs e)
{
	if(this.SecurityControls. GetCurrentUserID() == "ALFKI")
	{
		this.Menu.Menu2MenuItem.Button.RedirectUrl="http://www.ironspeed.com";
		this.Menu.Menu2MenuItemHilited.Button.RedirectUrl = "http://www.ironspeed.com";
	}
	else
	{
		this.Menu.Menu2MenuItem.Button.RedirectUrl = “http://www.google.com”;
		this.Menu.Menu2MenuItemHilited.Button.RedirectUrl = "http://www.google.com";
	}
}
Visual Basic .NET:
Private Sub Page_PreRender(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.PreRender
	If Me.SecurityControls. GetCurrentUserID() = "ALFKI" Then
		Me.Menu.Menu2MenuItem.Button.RedirectUrl = 	“http://www.ironspeed.com”
		Me.Menu.Menu2MenuItemHilited.Button.RedirectUrl = “http://www.ironspeed.com”
	Else
		Me.Menu.Menu2MenuItem.Button.RedirectUrl = 	“http://www.google.com”
		Me.Menu.Menu2MenuItemHilited.Button.RedirectUrl = “http://www.google.com”
	End If
End Sub
Please note that you should also set the RedirectUrl property for the highlighted version of the menu as shown in the code above.

[bookmark: _Toc104137564][bookmark: _Toc104207628][bookmark: _Toc104267795][bookmark: _Toc104634714][bookmark: _Ref157426790][bookmark: _Toc412569614][bookmark: _Toc104286942][bookmark: _Toc104634722][bookmark: _Toc414866317]Retrieve Records with Primary, Non-Primary, and Composite Keys
Updated May 11, 2010
Iron Speed Designer V7.0 and later
Retrieving records with primary key using the GetRecord() function
It’s easy to read a single record from the database using a primary key with the GetRecord() function:
C#:
OrdersRecord myRecord;
string whereStr = "OrderID='10261'";
myRecord = OrdersTable.GetRecord(whereStr);
Or
OrdersRecord myRecord;
myRecord = OrdersTable.Instance.GetRecord("10261", false);
Visual Basic .NET:
Dim myRecord As OrdersRecord
Dim whereStr As String = "OrderID='10261'"
myRecord = OrdersTable.GetRecord(whereStr)
The argument to the GetRecord specifies a whereStr.
Visual Basic .NET:
Dim myRecord As OrdersRecord
myRecord = OrdersTable.GetRecord("10261", False)
The first argument to GetRecord specifies the primary key value as a string. Set the second argument to True if you intend to update the contents of this record so it can be saved in the database later. Set the second argument to False to fetch a read-only record.
Retrieving records using a non-primary key
The GetRecord function also returns the record based on a non-primary key.
C#
OrdersRecord myRecord;
string whereStr= "EmployeeID='1'";
myRecord = OrdersTable.GetRecord(whereStr);
Visual Basic .NET:
Dim myRecord As OrdersRecord
Dim whereStr As String = "EmployeeID='1'"
myRecord = OrdersTable.GetRecord(whereStr)
Retrieving records using a composite key
Use the GetRecord function to retrieve records with a composite key, just like retrieving a record with a primary key. However, pass a KeyValue composite key structure as an argument to GetRecord instead of a simple primary key string. After defining (declaring) the KeyValue object, add elements to the KeyValue object using the KeyValue.AddElement() method.
C#
BaseClasses.Data.KeyValue myKeyValue= new BaseClasses.Data.KeyValue();
myKeyValue.AddElement(Order_DetailsTable.Instance.OrderIDColumn.InternalName, "10248");
myKeyValue.AddElement(Order_DetailsTable.Instance.ProductIDColumn.InternalName, "72");

Order_DetailsRecord myRecord= Order_DetailsTable.GetRecord(myKeyValue, false);
Visual Basic .NET
Dim myKeyValue As New BaseClasses.Data.KeyValue
myKeyValue.AddElement(Order_DetailsTable.Instance.OrderIDColumn.InternalName, "10248")
myKeyValue.AddElement(Order_DetailsTable.Instance.ProductIDColumn.InternalName, "72")
Dim myRecord As Order_DetailsRecord = Order_DetailsTable.GetRecord(myKeyValue, False)

[bookmark: _Ref259177011][bookmark: _Toc412569615][bookmark: _Toc414866318]Setting a Field to NULL
In certain situations, we want to set a field, such as a DateTime field, to NULL. This is accomplished with a simple code customization.
The example below uses the Orders table in the Southwind sample database included with Iron Speed Designer. We set the ShippedDate field to NULL if the user does not specify the Order Date on the Edit Orders page. The SaveData() method is overridden to check if there is an Order Date, and if not, we set the Shipped Date to NULL in the the page’s Page class.
Step 1: In the Layout Editor, select the page and then select the OrderRecordControl.
Step 2: In the Property Sheet, Code methods group, override the SaveData() method to check if OrderDate is empty. If so, set the ShippedDate field to NULL. The SaveData() method is called when the “Save” button is clicked.
 [image:]
Add this code snippet after the Me.GetUIDate() call. This creates an instance of ColumnValue and sets it to nothing. This is similar to creating a record object and setting the Date field to NULL.
C#:
if ((this.OrderDate.Text.Trim().Equals(""))) {

	BaseClasses.Data.ColumnValue cv = default(BaseClasses.Data.ColumnValue);
	cv = new BaseClasses.Data.ColumnValue(null);

	 this.DataSource.SetShippedDateFieldValue(cv);
}
Visual Basic .NET:
If (Me.OrderDate.Text.Trim().Equals("")) Then

	Dim cv As BaseClasses.Data.ColumnValue
	cv = New BaseClasses.Data.ColumnValue(Nothing)
	Me.DataSource.SetShippedDateFieldValue(cv)

End If
This code is automatically placed in the OrdersRecordControl class in EditOrders.Controls.cs (.vb).
Step 3: Build and run your application.
Now when the user clicks the “Save” button and there is no Order Date, the Shipped Date field is set to NULL.
Before:
[image:]
During:
[image:]
Notice the Order Date was removed while there is a Shipped Date.
After:
[image:]

[bookmark: _Toc104376365][bookmark: _Toc104634727][bookmark: _Ref157426802][bookmark: _Toc412569616][bookmark: _Toc414866319]Use Data Access Classes in Windows Forms Applications
Updated June 5, 2006
Iron Speed Designer V4.0 and later
Some Iron Speed Designer users have successfully used the Data Access Layer created by Iron Speed Designer in the context of a Windows Forms application. Iron Speed does not provide support for this approach since Iron Speed Designer builds Web applications exclusively. However, the following general guidelines provide several suggestions on how to use the Data Access Layer classes in Windows Forms applications.
Step 1: We suggest you first create a web application using Iron Speed Designer to create the data access classes for the relevant tables. The data access classes are stored in the DataAccess folder of your application.
Step 2: We suggest you create a copy of the BaseClasses.vbproj file (or csproj file) and remove all sub-folders except the Data folder. You can then build a copy of the BaseClasses just with the Data Access Layer. Perhaps you can rename the output DLL from BaseClasses.dll to DataAccess.dll.
Step 3: Include the classes from Step 1 into this DLL. This constitutes the DLL for your Data Access Layer that you can use in your Windows Forms application. Be sure to reference the Application.dll and BaseClasses.dll in your Visual Studio project. You must add these references manually.
Step 4: Copy the connection string information from your Web.config file (AppSettings section) an App.config. file in your Windows Forms application.
Note: if you change your data structures, be sure to refresh the reference to the ProjectName.dll.

[bookmark: _Ref228615310][bookmark: _Toc412569617][bookmark: _Toc414866320]Validate a Field in the Business Layer
It’s often useful to validate a field using common validation logic applied across a suite of pages rather than on individual pages. For example, you can validate a field by overriding the Validate() method in the code-behind file of individual pages, such as the Add Record and Edit Record pages. However, this results in code redundancy making it hard to maintain the code. To solve this, add your custom validation code in your application’s Business Layer.
The following examples illustrate two different ways to check if a field contains an empty string before saving a record to the database.
Option #1: Handle the InsertingRecord and UpdatingRecord events
In your application’s Business Layer section are two classes containing the field you want to validate:
<Table Name>Table
<Table Name>Record
Customize the <Table Name>Record class to validate fields in a record. For example, to validate the Orders.ShipName field, modify:
…\Business Layer\Orders\OrdersRecord.cs (.vb)
To validate new records about to be inserted into the database, open <Table Name>Record.cs (.vb) file and add the following code:
C#:
public OrdersRecord()
{
	 this.InsertingRecord += new BaseClasses.IRecordWithTriggerEvents.InsertingRecordEventHandler(this.Insert);
}

/// <summary>
/// This custom method is an event handler for the insert event in the Data Access Layer.
/// </summary>
private void Insert(object sender, System.ComponentModel.CancelEventArgs e)
{
	// You can modify the following sample code to fit specific need
	if (this.ShipName == null || this.ShipName.Trim().Length == 0) {
		throw new Exception("Ship name is empty ");
	}
}
Visual Basic .NET:
<summary>
‘ This custom method is an event handler for the insert event in the Data Access Layer.
</summary>
Private Sub Insert(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) _
Handles MyBase.InsertingRecord

	' You can modify the following sample code to fit specific need
	If Me.ShipName Is Nothing OrElse Me.ShipName.Trim().Length = 0 Then
		Throw New Exception("Ship name is empty")
	End If
End Sub
If you want to add the same validation logic while editing a record in an edit page then, apply the above code customization to a method which handles UpdatingRecord event. Add the UpdatingRecord() event handler to the <Table Name>Record class in the Business Layer:
C#:
public OrdersRecord()
{
	this.UpdatingRecord += new BaseClasses.IRecordWithTriggerEvents.InsertingRecordEventHandler(this.Update);
}

/// <summary>
/// This custom method is an event handler for the update event in the Data Access Layer.
/// </summary>
private void Update(object sender, System.ComponentModel.CancelEventArgs e)
{
	// You can modify the following sample code to fit specific need
	if (this.ShipName == null || this.ShipName.Trim().Length == 0) {
		throw new Exception("Ship name is empty ");
	}
}
Visual Basic .NET:
<summary>
' This custom method is an event handler for the update event in the Data Access Layer.
</summary>
Private Sub Update(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) _
	Handles MyBase.UpdatingRecord
	' You can modify the following sample code to fit specific need
	If Me.ShipName Is Nothing OrElse Me.ShipName.Trim().Length = 0 Then
		Throw New Exception("Ship name is empty")
	 End If
End Sub
Option #2: Override the Save() method
Override the Record class’s Save() method to validate fields in a record. For example, to validate the Orders.ShipName field, modify:
…\Business Layer\Orders\OrdersRecord.cs (.vb)
C#:
/// This method is to override save() method to customize the save.
public override void Save()
{

	//You can modify the following sample code to fit specific need
	if (this.ShipName == null || this.ShipName.Trim().Length==0)
	{
		throw new Exception("Ship name is empty ");
	}
	base.Save();
}
Visual Basic .NET:
''' This method is to override save() method to customize the save.
Public Overrides Sub Save()
	If Me.ShipName Is Nothing OrElse Me.ShipName.Trim().Length= 0 Then
		Throw New Exception("Ship name is empty ")
	End If
	MyBase.Save()
End Sub
The Save() method is called when both adding and editing records, so only one customization is needed.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.jpeg

image14.jpeg

image15.jpeg

image16.emf
Columns

-Width

Column

-Value

Detail

-Value

Header

-FontColor

-BackgroundColor

AltStyle

-BackgrondColor

-VerticalAlign

-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

oleObject1.bin
Columns

-Width

Column

-Value

Detail

-Value

Header

-FontColor
-BackgroundColor

AltStyle

-BackgrondColor
-VerticalAlign
-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

image17.emf
Columns

-Width

Column

DetailHeader

-FontColor

-BackgroundColor

AltStyle

-BackgrondColor

-VerticalAlign

-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

oleObject2.bin
Columns

-Width

Column

Detail

Header

-FontColor
-BackgroundColor

AltStyle

-BackgrondColor
-VerticalAlign
-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

oleObject3.bin
Columns

-Width

Column

-Value

Detail

-Value

Header

-FontColor
-BackgroundColor

AltStyle

-BackgrondColor
-VerticalAlign
-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

oleObject4.bin
Columns

-Width

Column

Detail

Header

-FontColor
-BackgroundColor

AltStyle

-BackgrondColor
-VerticalAlign
-HorizontalAlign

Style

1

*

1

0..1

1

0..1

1

0..1

1

0..1

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image1.png

